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Appendix B

B.1 General equilibrium prices in the endowment economy

We use the stochastic differential for consumption implied by the Euler equation (39)
and the market clearing conditionCt = Yt together with the exogenous dividend process
(7).

Proposition B.1 (Asset pricing). In general equilibrium, market clearing implies
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as well as implicitly the portfolio jump-size
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Proof. Using the inverse function, we are able to determine the path for consumption
(u′′ �= 0). From the Euler equation (39), we obtain
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where we employed the inverse function c = g(u′(c)), which has

g′(u′(c)
) = 1/u′′(c), g′′(u′(c)

) = −u′′′(c)/
(
u′′(c)

)3
.

Economically, concave utility (u′(c)> 0, u′′(c)< 0) implies risk aversion, whereas convex
marginal utility, u′′′(c)> 0, implies a positive precautionary saving motive. Accordingly,
−u′′(c)/u′(c) measures absolute risk aversion, whereas −u′′′(c)/u′′(c) measures the de-
gree of absolute prudence, that is, the intensity of the precautionary saving motive.

Because output is perishable, using the market clearing condition Yt = Ct =At , and

dCt = μ̄Ct dt + σ̄Ct dBt +
(
exp(ν̄) − 1

)
Ct− dNt ,

the parameters of price dynamics are pinned down in general equilibrium. In particular,
we obtain Jt implicitly as function of ν̄, Dt , and the curvature of the consumption func-
tion, where C̃(Wt ) ≡ C((1 − ζM (t ))Wt )/C(Wt ) defines optimal consumption jumps. For
market clearing, we require the percentage jump in aggregate consumption to match the
size of the disaster, exp(ν̄) = C̃(Wt ), and thus exp(ν̄) = C((1+ (Jt−Dt )wt+Dt )Wt )/C(Wt )
implies a constant jump size. For consumption being linear homogeneous in wealth,

ζM = eν̄ − 1.

Similarly, the market clearing condition pins down σMWtCW = σ̄Ct , and
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Inserting our results back into (B.1), we obtain that consumption follows
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This in turn determines the return on the riskless asset
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As a result, the higher the subjective rate of time preference, ρ, the higher is the gen-
eral equilibrium interest rate to induce individuals to defer consumption (cf. Breeden
(1986)). For convex marginal utility (decreasing absolute risk aversion), u′′′(c) > 0, a
lower conditional variance of dividend growth, σ̄2, and a higher conditional mean of
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dividend growth, μ̄, and a higher default probability, q, decrease the bond price and in-
creases the interest rate.

Proposition B.2 (PDE approach). An alternative characterization of the no-arbitrage
condition is given by the PDE
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where we defined dRdt ≡ (dPdt )/Pdt + (At/Pdt )dt. Inserting the solution in (49) yields
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which completes the proof that the PDE approach gives the same price Pdt .
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B.2 An alternative mimicking economy with rare events

B.2.1 The underlying production economy Consider the representative-agent neoclas-
sical production economy in Appendix A.3. The following propositions show the optimal
consumption function, the SDF, and the equilibrium prices for different asset classes, for
the parametric restriction α= γ.

Proposition B.3 (Linear-policy function). Suppose the production function F(Kt , L) is
Yt =AtKαt L1−α, utility has constant relative risk aversion, that is, −u′′(Ct )Ct/u′(Ct ) = γ,
and let α= γ (with γ < 1). Then optimal consumption is linear in wealth.

α= γ ⇒ Ct =C(Wt ) = kWt ,

k≡ (
ρ− (

e(1−γ)ν − 1
)
λ+ (1 − γ)δ

)
/γ+ 1

2
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(B.2)

where k denotes the marginal propensity to consume out of (physical) wealth.

Proof. The idea of the proof follows closely that of Proposition A.9. An educated guess
of the value function is
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which implies that C−1/γ
1 = (ρ− (e(1−γ)ν − 1)λ+ (1 − γ)δ+ 1

2γ(1 − γ)σ2 )/γ. This proves
that the guess (B.3) indeed is a solution, and by inserting the guess together with the
constant, we obtain the optimal policy function for consumption.

Proposition B.4 (Rental rate of capital). Suppose the production function F(Kt , L)
is Yt = AtK

α
t L

1−α. The rental rate of capital is obtained from the marginal prod-
uct of capital, rt = αAtK

α−1
t , and follows the reducible stochastic differential equa-

tion,

drt = c1(c2 − rt )rt dt + (α− 1)σrt dZt + σ̄rt dB̄t +
(
exp

(
(α− 1)ν

) − 1
)
rt− dNt
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)
rt− dN̄t , (B.4)

in which the constants c1 and c2 for the parametric restriction α= γ are given by

c1 ≡ 1 − α
α

, c2 ≡ αk+ αδ− 1
2
α(α− 2)σ2 − α

α− 1
μ̄.

Proof. The idea of the proof is along the lines of Proposition A.10.

Proposition B.5 (Stochastic discount factor). Following the assumptions in Proposi-
tion B.3, the stochastic discount factor (SDF) is given by

ms/mt = e−
∫ s
t (rv−δ)dv+[λ−e(1−γ)νλ+γσ2− 1

2 (γσ )2](s−t )−γσ(Zs−Zt )−γν(Ns−Nt ). (B.5)

Proof. The idea of the proof is along the lines of Proposition A.11.

Proposition B.6 (Risky bond). Consider a risky asset that pays at the rate rt in t+ 1. The

one-period holding return of an asset with the random payoffXb,t+1 = e
∫ t+1
t rs ds is

Rbt+1 = exp
(∫ t+1

t

(
rv − δ− γσ2 − e−γν(1 − eν)λ)dv). (B.6)

Proof. Substitute the random payoff Xb,t+1 in (2) to obtain the equilibrium price of
this risky bond at time t as

Pbt =Et
[
mt+1

mt
e
∫ t+1
t rs ds

]
.

Using the definition of the SDF (B.5) and making use of Lemma A.2 yields

Pbt = eδ+γσ2+e−γνλ−e(1−γ)νλ.

For any s > t,Rbs =Xb,s/P
b
t denotes the gross return on the risky bond. The desired result

follows by setting s = t + 1.
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Proposition B.7 (Risky asset). The one-period holding return on an asset that pays one
unit of outputXc,t+1 =At+1K

α
t+1 is

Rcs = exp
(∫ s
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2
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. (B.7)

Proof. For any s > t, it follows from (62) and (63) that
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Set s = t+ 1 and substitute the payoffXc,t+1 together with the definition of the SDF (B.5)
into (2). Making use of Lemma A.2 compute the equilibrium price of this asset as
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For any s > t, Rcs =Xc,s/P
b
t denotes the gross return on the risky bond. The desired

result follows by setting s = t + 1.

B.2.2 Euler equation errors for α= γ Consider two assets, that is, the risky bond,Rbt+1,
and the risky claim on output, Rct+1. From the definition of Euler equation errors (3), for
any asset i and CRRA preferences

eiR =Et
[
e−

∫ t+1
t (rs−δ)ds+λ−e(1−γ)νλ+γσ2− 1

2 (γσ )2−γσ(Zt+1−Zt )−γν(Nt+1−Nt )Rit+1
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where we inserted the SDFs from (B.5). Inserting the one-period holding equilibrium
returns for the risky bond (B.6) yields

ebR =Et
[
e(1−e−γν )λ− 1

2 (γσ )2−γσ(Zt+1−Zt )−γν(Nt+1−Nt )] − 1.

Conditional on no disasters, on average we can rationalize Euler equation errors

ebR|Nt+1−Nt=0 = exp
((

1 − e−γν)λ) − 1,

or, conditional on no rare events, on average we can rationalize Euler equation errors

eb
R|Nt+1−Nt=N̄t+1−N̄t=0

= exp
((

1 − e−γν)λ) − 1.

Similarly, inserting the return on the claims on output (B.7) we obtain

ecR =Et
[
e−

1
2 σ̄

2−(eν̄−1)λ̄+σ̄(B̄t+1−B̄t )+ν̄(N̄t+1−N̄t )] − 1.

EE errors based on excess returns are obtained from eiX = eiR − ebR for any asset i.
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B.2.3 The mimicking endowment economy for α= γ

Technology Suppose production of perishable output, Yt , is exogenously given: there
is no possibility of affecting the output at any time. Let Yt = αkAtKαt /rt = kKt , whereKt
is the aggregate capital stock, andAt is stochastic technology or total factor productivity
(TFP). Output is perishable. The law of motion ofAt is given in (50).

The capital stock is subject to stochastic depreciation,

dKt =
(
AtK

α
t − (k+ δ)Kt

)
dt + σKt dZt +

(
exp(ν) − 1

)
Kt− dNt , (B.8)

in which Zt is a standard Brownian motion (uncorrelated with B̄t ), and Nt is a Poisson
process with constant arrival rate λ.

Thus, in the mimicking endowment economy with α= ρ, output follows

dYt = k
(
AtK

α
t − (k+ δ)Kt

)
dt + σkKt dZt

+ (
exp(ν) − 1

)
kKt− dNt

= (
AtK

α−1
t − (k+ δ)

)
Yt dt + σYt dZt

+ (
exp(ν) − 1

)
Yt− dNt

= (
rt/α− (k+ δ)

)
Yt dt + σYt dZt

+ (
exp(ν) − 1

)
Yt− dNt

≡ μtYt dt + σtYt dZt + (Yt −Yt− )dNt

with μt = rt/α− (k+ δ), σt ≡ σ and rt = αAtKα−1
t , such that

drt = c1(c2 − rt )rt dt + (α− 1)σrt dZt + σ̄rt dB̄t
+ (

exp
(
(α− 1)ν

) − 1
)
rt− dNt

+ (
exp(ν̄) − 1

)
rt− dN̄t (B.9)

in which c1 ≡ 1−α
α , and c2 ≡ αk+ αδ− 1

2α(α− 2)σ2 − α
α−1 μ̄.

Preferences The representative consumer maximizes expected discounted lifetime
utility given in (8) and (9). Further assume that 1/ψ = γ such that the problem is re-
duced to the standard power utility case in (10).

Equilibrium In this economy, it is easy to determine equilibrium quantities and equi-
librium asset holdings. The economy is closed, output will be consumed, Ct = Yt , and
households own the physical capital. Other assets are zero in net supply.

B.3 Tables and figures

See Figure B.1 and Tables B.1–B.8.
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Figure B.1. General equilibrium asset returns. Notes: This figure illustrates the equilibrium
asset returns and shows one realization of the return to the bonds and the risky assets in the
simple endowment economy (upper two panels, parameterization (2) in Table B.1) and the en-
dowment economy mimicking a production economy (lower two panels, parameterization (2)
in Table B.2), respectively.
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Table B.1. Robustness: simulation study (endowment economy).

(1) (2) (3) (4)

ρ rate of time preference 0.03 0.03 0.03 0.03
γ coef. of relative risk aversion 0.5 4 4 4
μ̄ consumption growth 0.01 0.01 0.01 0.01
σ̄ consumption noise 0.005 0.005 0.005 0.005
−ν̄ size of consumption disaster 0.4 0.4 0.4 0
λ consumption disaster probability 0.017 0.017 0.017 0
−κ size of government default 0 0 0.3 0
q default probability 0 0 0.5 0

Table B.2. Robustness: simulation study (production economy).

(1) (2) (3) (4)

ρ rate of time preference 0.03 0.024 0.016 0.03
γ coef. of relative risk aversion 0.5 4 4 4
α output elasticity of capital 0.5 0.6 0.6 0.6
δ capital depreciation 0.025 0.025 0.025 0.05
μ̄ productivity growth 0.02 0.01 0.01 0.01
σ̄ productivity noise 0.01 0.01 0.01 0.01
−ν̄ size of productivity slump 0.01 0.01 0 0
λ̄ productivity jump probability 0.2 0.2 0 0
σ capital stochastic depreciation 0.005 0.005 0.005 0.005
−ν size of capital disaster 0.55 0.55 0.55 0
λ capital disaster probability 0.017 0.017 0.017 0

Table B.3. Robustness: simulation study (long-run risk model).

(1) (2) (3) (4)

ρ rate of time preference 0.024 0.024 0.03 0.02
γ coef. of relative risk aversion 10 7.5 10 30
ψ EIS 1.5 1.5 1.5 1.5
μ̄ consumption growth 0.018 0.018 0.018 0.018
κμ LRR persistence 0.256 0.256 0.3 0.256
νμ LRR volatility multiple 0.528 0.528 0.456 0.456
ϑ̄ baseline volatility (×100) 0.0729 0.0729 0.0625 0.0625
κϑ persistence volatility 0.156 0.156 0.015 0.156
νϑ vol-of-vol 0.0035 0.0035 0.0027 0.0027
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Table B.4. C-CAPM simulation results (endowment economy). The table reports the simulated
Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM observed at
quarterly frequency in the endowment economy with rare events (cf. Section 3.1) for a parame-
terization as in column (3) in Table B.1; the bond return, the equity return, the equity premium,
and consumption growth (all annualized); and the GMM estimates of φ= (β, γ)� with β= 0.97
and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both annualized).
Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50 years.

Analytical solution Unconditional

Results parameterization (3) Mean Std. dev. Mode Median

ebR EE error risky bond 0.09 6.61 −5.55 −0.14
ecX EE error excess return −0.12 2.59 1.68 0.72
RMSE root mean square error 3.86 3.20 4.05 3.98

Observed random variables
Rbt+1 bill return 1.16 0.36 1.35 1.35
Rct+1 equity return 2.49 0.62 3.04 2.45
Rct+1 −Rbt+1 equity premium 1.34 0.50 1.68 1.52
ln(Ct+1/Ct ) consumption growth 0.33 0.75 0.98 0.27

Parameter estimates
β̂ factor of time preference 1.07 0.14 0.98 0.99
γ̂ coef. of relative risk aversion 356.98 434.27 5.00 5.40

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00



Supplementary Material Peso problems in the estimation of the C-CAPM 11

Table B.5. C-CAPM simulation results (production economy). The table reports the simulated
Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM observed at
quarterly frequency in the production economy with rare events (cf. Section 3.2) for a parame-
terization as in column (2) in Table B.2; the bond return, the equity return, the equity premium,
and consumption growth (all annualized); and the GMM estimates of φ= (β, γ)� with β= 0.98
and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both annualized).
Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50 years.

Constant-saving-function, Unconditional

Results parameterization (2) Mean Std. dev. Mode Median

ebR EE error risky bond 0.61 4.73 0.75 0.63
ecX EE error excess return −0.60 4.70 −0.75 −0.74
RMSE root mean square error 3.69 3.00 0.68 4.36

Observed random variables
Rbt+1 bill return (gross) 7.40 1.10 6.39 7.21
Rct+1 equity return (gross) 10.74 0.77 10.82 10.86
Rct+1 −Rbt+1 equity premium 3.34 1.27 3.32 3.31
ln(Ct+1/Ct ) consumption growth 1.80 0.43 1.71 1.84

Parameter estimates
β̂ factor of time preference 0.93 0.37 0.99 0.99
γ̂ coef. of relative risk aversion 152.20 314.21 2.50 3.55

êbR EE error risky bond −0.01 0.02 0.00 0.00
êcX EE excess return 1.14 1.78 0.00 0.00

R̂MSE root mean square error 0.81 1.26 0.00 0.00
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Table B.6. C-CAPM simulation results (production economy). The table reports the simulated
Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM observed at
quarterly frequency in the production economy with rare events (cf. Section 3.2) for a parame-
terization as in column (3) in Table B.2; the bond return, the equity return, the equity premium,
and consumption growth (all annualized); and the GMM estimates of φ= (β, γ)� with β= 0.98
and γ = 4 based on moments (15), and the estimated EE errors and RMSE (both annualized).
Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50 years.

Constant-saving-function, Unconditional

Results parameterization (3) Mean Std. dev. Mode Median

ebR EE error risky bond 1.00 5.23 1.05 0.76
ecX EE error excess return −0.87 5.21 −0.87 −0.73
RMSE root mean square error 3.97 3.52 0.68 4.32

Observed random variables
Rbt+1 bill return (gross) 7.93 1.25 7.01 7.69
Rct+1 equity return (gross) 11.20 0.78 11.66 11.34
Rct+1 −Rbt+1 equity premium 3.27 1.44 3.27 3.33
ln(Ct+1/Ct ) consumption growth 2.10 0.45 2.42 2.15

Parameter estimates
β̂ factor of time preference 0.94 0.50 1.00 0.99
γ̂ coef. of relative risk aversion 267.66 520.80 5.00 3.56

êbR EE error risky bond −0.01 0.01 0.00 0.00
êcX EE excess return 0.95 1.57 0.00 0.00

R̂MSE root mean square error 0.67 1.11 0.00 0.00
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Table B.7. C-CAPM simulation results (long-run risk model). The table reports the simulated
Euler equation (EE) errors and RMSE∗ (both annualized) for the standard C-CAPM observed
at quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4) for a
parameterization as in column (2) in Table B.3; the bond return, the equity return, the equity
premium and consumption growth (all annualized); and the GMM estimates ofφ= (β, γ)� with
β= 0.98 and γ = 7.5 based on moments (15), and the estimated EE errors and RMSE (both an-
nualized). Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50
years.

Approximate solution Unconditional

Results parameterization (2) Mean Std. dev. Mode Median

Rbt+1 −E(Rbt+1 ) pricing error bond 0.00 0.50 −0.09 0.00
Rdt+1 −E(Rdt+1 ) pricing error risky asset 0.00 0.84 0.16 −0.01
RMSE∗ root mean square error 0.61 0.44 0.27 0.51

Observed random variables
Rbt+1 bill return 2.85 0.51 2.77 2.85
Rdt+1 equity return 4.02 0.85 3.98 4.01
Rdt+1 −Rbt+1 equity premium 1.17 0.47 1.08 1.17
ln(Ct+1/Ct ) consumption growth 1.76 0.85 1.65 1.76

Parameter estimates
β̂ factor of time preference 1.05 0.05 0.99 1.04
γ̂ coef. of relative risk aversion 16.03 6.67 14.05 15.78

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table B.8. C-CAPM simulation results (long-run risk model). The table reports the simulated
Euler equation (EE) errors and RMSE∗ (both annualized) for the standard C-CAPM observed at
quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4) for a pa-
rameterization as in column (4) in Table B.3; the bond return, the equity return, the equity pre-
mium, and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)� with
β = 0.98 and γ = 30 based on moments (15), and the estimated EE errors and RMSE (both an-
nualized). Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50
years.

Approximate solution Unconditional

Results parameterization (4) Mean Std. dev. Mode Median

Rbt+1 −E(Rbt+1 ) pricing error bond 0.00 0.46 0.22 0.01
Rdt+1 −E(Rdt+1 ) pricing error risky asset 0.00 0.70 −0.14 −0.01
RMSE∗ root mean square error 0.53 0.35 0.24 0.45

Observed random variables
Rbt+1 bill return 0.57 0.46 0.80 0.58
Rdt+1 equity return 4.62 0.70 4.49 4.61
Rdt+1 −Rbt+1 equity premium 4.05 0.48 4.07 4.04
ln(Ct+1/Ct ) consumption growth 1.77 0.70 1.71 1.76

Parameter estimates
β̂ factor of time preference 0.94 0.09 0.92 0.94
γ̂ coef. of relative risk aversion 66.42 12.49 65.50 65.09

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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