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This paper shows that the consumption-based capital asset pricing model (C-
CAPM) with low-probability disaster risk rationalizes pricing errors. We find that
implausible estimates of risk aversion and time preference are not puzzling if mar-
ket participants expect a future catastrophic change in fundamentals, which just
happens not to occur in the sample (a “peso problem”). A bias in structural param-
eter estimates emerges as a result of pricing errors in quiet times. While the bias
essentially removes the pricing error in the simple models when risk-free rates are
constant, time-variation may also generate large and persistent estimated pricing
errors in simulated data. We also show analytically how the problem of biased es-
timates can be avoided in empirical research by resolving the misspecification in
moment conditions.
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1. Introduction

It is a widespread perception that the workhorse of financial economics—the
consumption-based capital asset pricing model (C-CAPM) of Rubinstein (1976), Lucas
(1978), and Breeden (1979)—has fallen on hard times.1 Most prominent is the failure
to account for the equity premium for any plausible values of risk aversion, which has
been referred to as the “equity premium puzzle” (Mehra and Prescott (1985)). These
limitations have given rise to a vast literature of promising C-CAPM extensions to
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achieve a better empirical performance. As a fly in the ointment, Lettau and Ludvigson
(2009) showed that leading extensions—including models with long-run risk and recur-
sive preferences (Bansal and Yaron (2004)), habit formation (Campbell and Cochrane
(1999)), and limiting participation (Guvenen (2009))—cannot explain the large and per-
sistent pricing errors found empirically (referred to as Euler equation (EE) errors). Even
if this “pricing error puzzle” has not received as much attention as the equity premium
puzzle, an open question remains why the leading asset pricing models do fail on that
particular dimension (Lettau and Ludvigson (2009, p. 255)):

“Unlike the equity premium puzzle, these large Euler equation errors cannot be resolved
with high values of risk aversion. To explain why the standard model fails, we need to de-
velop [. . . ] models that can rationalize its large pricing errors.”

Against this backdrop, our paper makes four key contributions. First, we show that
a C-CAPM model with rare disasters in the spirit of Rietz (1988) and Barro (2006, 2009),
that is, allowing for low-probability events causing infrequent but sharp contractions
in aggregate consumption—not only explains the equity premium (as shown in Barro
(2006)), but also rationalizes the large pricing errors found empirically. In fact, the puz-
zle is not about how to rationalize pricing errors, but rather how to generate empirical
pricing errors. Second, we shed light on the source of pricing errors by providing analyt-
ical expressions for asset returns, the stochastic discount factor (SDF) and EE errors,
both in an endowment economy and in a production economy with low-probability
consumption/capital disasters. Our analytical results demonstrate that the EE errors are
intimately linked to the poor empirical performance of the C-CAPM found in economet-
ric studies. In particular, we elucidate why the parameter estimates for time preference
and risk aversion tend to be severely biased in empirical studies. Third, we run exten-
sive Monte Carlo simulations that demonstrate the impact of low-probability events on
the plausibility of standard C-CAPM parameter estimates in small samples when the
model is estimated, as it is standard, by the generalized method of moments (GMM).
We find that implausibly high estimates for the risk aversion and/or time preference
parameters—exactly as found in the empirical literature—naturally arise if market par-
ticipants expect a future catastrophic change in fundamentals, which just happen not
to occur in the sample, or in other words, if the estimation is subject to a so-called peso
problem.2 Fourth, to address this issue, we suggest two simple corrections of the mo-
ment conditions, both implying more plausible empirical parameter estimates.

The novel result of this paper is to show that estimated EE errors may result—despite
that GMM’s objective is to minimize pricing errors—together with biased parameter es-
timates. We present an analytical investigation of EE errors in models with rare events
and a data generating process, which is able to generate estimated EE errors and biased
parameter estimates of similar order of magnitudes as we observe in empirical data.
Similar to the statistical approach for heavy-tailed distributions in Kocherlakota (1997),
we show that by accounting for rare disasters in the C-CAPM, the model produces rea-
sonable parameter estimates and pricing errors consistent with the empirical data.

2The term “peso problem” is interchangeably with the small-sample inference problems arising from
these expected events. The phenomenon is named after events in the Mexican peso market (Lewis (1992,
p. 142)).
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We show that in small samples where consumption disasters just did not happen to
occur, or more generally, where the sample frequency of disasters is not equal to their
population frequency, the standard moment conditions are misspecified. This misspec-
ification in turn typically leads to substantial biases of parameter estimates because the
objective of GMM is to minimize the squared EE errors. In a simple endowment econ-
omy, this objective has two related but unpleasant properties: (i) it essentially removes
the pricing errors through (ii) biased parameter estimates of risk aversion and time pref-
erence. Only in cases where the minimum of the GMM objective is not sufficiently close
to zero, as is often the case in models with changing investment opportunities associ-
ated with time-varying interest rates, estimated pricing errors may occur.

In line with the results in Lettau and Ludvigson (2009), we illustrate that a model
with long-run risk and recursive preferences is unable to generate estimated EE errors,
while generating moderately biased estimates of the risk aversion coefficient. Overall,
our results indicate that rare disaster risk is key for explaining the pricing error puzzle.

From a practical standpoint, we put forth several ways of how the biased estimates
can be avoided in empirical research by resolving the misspecification in samples with
peso problems. Our first proposal starts by assuming that the C-CAPM with rare events is
the true data generating process. Then we use the implied EE errors to remove any mis-
specification in the moment conditions. While elegant, this remedy is far from perfect in
that is not model-free and depends on the assets under consideration. Our second rem-
edy builds on Parker and Julliard (2005) and includes a set of constants in the moment
conditions that are intended to capture any disaster risk without the need of specifying
a particular model.

Our work relates to the literature on the impact of peso problems on financial mar-
kets (cf. Veronesi (2004)).3 While the role of unobserved regime shifts, fat-tailed shocks,
and peso problems has been recognized already in earlier literature as a source of mis-
specification when a C-CAPM is fitted to the data (cf. Kocherlakota (1997), Saikkonen
and Ripatti (2000)), we go beyond the past literature in various ways. First of all, we cast
the problem within the rare disaster framework of Rietz (1988) and Barro (2006). In their
framework, asset prices reflect risk premia for infrequent and severe disasters in which
consumption drops sharply. If disasters are expected by investors ex ante (reflected in
their decisions on consumption and portfolio choice), even if they happen not to oc-
cur in sample, a sizeable equity premium can materialize.4 Using historical estimates of
consumption disasters for a broad set of countries over a very long period, Barro (2006)

3It seems fair to say that the work of Barro (2006) has led to a resurgence of academic interest in the
rare disasters hypothesis. Subsequent work includes Barro and Ursúa (2008), Barro (2009), Nakamura et
al. (2013), Barro and Jin (2021). Recent work shows that rare event models help to explain many phenom-
ena in macro-finance. Examples include: (i) time-series predictability and excess volatility in stock markets
(e.g., Gabaix (2008, 2012), Wachter (2013)), (ii) currency markets (e.g., Burnside et al. (2011), Farhi et al.
(2009)), (iii) options markets (e.g., Gabaix (2008), Backus, Chernov, and Martin (2011), Gabaix (2012), Seo
and Wachter (2019)), and (iv) business cycle dynamics (e.g., Gourio (2012), Gourio, Siemer, and Verdelhan
(2013)). Tsai and Wachter (2015) provided a comprehensive literature survey on rare events.

4This is related to the statement in Cochrane (2005, p. 30) that the US economy and other countries with
high historical equity premia may simply constitute very lucky cases of history. Brown, Goetzmann, and
Ross (1995) considered the related issue of survivorship for inference in empirical finance.
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showed that a calibrated version of the standard C-CAPM with rare events is able to

explain the level of the US equity premium for plausible parameters of risk aversion.

We add to this literature by showing that the rare disaster framework helps along two

other dimensions: (i) explaining the observed pricing errors that empirical researchers

typically encounter in finite samples when fitting a standard C-CAPM, and maybe even

more importantly, (ii) explaining the implausible estimates of structural parameters of-

ten obtained in empirical work.

Our paper also relates to work on the estimation of consumption-based asset pric-

ing models. When taking the C-CAPM to the data, the traditional approach is to estimate

the model by GMM. While the advantage of this approach is that it does not rely on a

specific structural model, it is sensitive to peso problems. For example, Saikkonen and

Ripatti (2000) illustrated the poor performance of the GMM estimator in small and even

relatively large samples in the presence of potential regime shifts. Several authors have

sought to address the empirical weaknesses of the C-CAPM through alternative estima-

tion approaches. In settings with rare disasters, information-theoretic and simulation-

based approaches have been proposed (among others, Julliard and Ghosh (2012), Naka-

mura et al. (2013), Sönksen and Grammig (2021)), although at the expense of additional

complexity. Drawing on the C-CAPM with rare events, we derive analytically the source

of misspecification of the moment conditions that plagues the GMM estimation of the

C-CAPM in finite samples. Therefore, we intentionally choose to work with the standard

GMM approach, precisely to understand better why the approach fails and generates

estimated EE errors and grossly biased parameters. This allows us to transparently show

that the pricing error puzzle and the poor performance of the C-CAPM are related (an

issue that has hitherto received little emphasis). It turns out that a more flexible version

of the model, which includes constants to capture the disaster risk helps in alleviating

the problems in empirical work.

The remainder of the paper is organized as follows. Section 2 provides a definition of

the EE errors and revisits the pricing puzzle. Section 3 presents the asset pricing models

with rare events. Section 4 shows analytical expressions for EE errors in finite samples,

provides the intuition for the source of the bias, and shows the empirical performance

of the C-CAPM with respect to EE errors and parameter estimates. We also discuss how

to resolve the misspecification to obtain more plausible values of risk aversion and time

preference. It also contains Monte Carlo evidence showing that rare disaster models help

in explaining several dimensions of the empirical weaknesses of the standard C-CAPM

including large empirical pricing errors. Section 5 concludes.

2. Pricing errors

In this section, we define Euler equation (EE) errors, and present a brief discussion of

the empirical facts and puzzles encountered in the data.
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2.1 Definitions

For analytical convenience, we consider the standard first-order condition implied by
the canonical version of the C-CAPM with time-separable utility functions,

u′(Ct ) = βEt
[
u′(Cs )Rs

]
, u′ > 0, u′′ < 0, s ≥ t. (1)

The optimality condition in (1) is referred to as the Euler equation. It determines the
optimal path of consumption,Ct , given the gross return on savings (or any traded asset),
Rs , and the time-discount factor,β≡ e−ρ(s−t ) ∈ (0, 1), with ρ denoting the subjective rate
of time preference. When pricing assets, we define the stochastic discount factor (SDF)
as the processms/mt such that for any security iwith price Pit and payoffXi

s at date s ≥ t,

mtP
i
t =Et

[
msX

i
s

] ⇒ 1 =Et
[
(ms/mt )Ris

]
, (2)

in which Ris ≡ Xi
s/P

i
t denotes the security’s return. Hence, by comparing condition (1)

to the pricing equation (2), we conclude that in the C-CAPM we discount the expected
payoff of any given asset byms/mt = βu′(Cs )/u′(Ct ) in order to find its equilibrium price.

Following Lettau and Ludvigson (2009), any deviations from (2), that is,

eiR ≡ Et
[
(ms/mt )Ris

] − 1, eiR,s ≡ (ms/mt )Ris − 1, (3)

eiX ≡ Et
[
(ms/mt )

(
Ris −Rbs

)]
, eiX ,s ≡ (ms/mt )

(
Ris −Rbs

)
, (4)

define Euler equation (EE) errors, based on the gross return on any tradable asset, Ris ,
or as a function of excess returns over a reference asset, Ris −Rbs , for example, the return
on bonds. In what follows, we refer to either eiR or eiX as pricing error, whereas to their

empirical counterparts êiR and êiX as the estimated pricing error. The latter is defined for
specific preferences. For example, for the C-CAPM with power utility and risk aversion
γ > 0, the EE errors for s = t + 1 are given by

êiR ≡ Et
[
β̂(Ct+1/Ct )−γ̂Rit+1

] − 1, êiR,t+1 ≡ β̂(Ct+1/Ct )−γ̂Rit+1 − 1, (5)

êiX ≡ Et
[
β̂(Ct+1/Ct )−γ̂

(
Rit+1 −Rbt+1

)]
, êiX ,t+1 ≡ β̂(Ct+1/Ct )−γ̂

(
Rit+1 −Rbt+1

)
. (6)

where β̂ and γ̂ denote the estimated parameters of time-preference and risk aversion.
Using data on consumption and asset returns, these estimates are traditionally obtained
by the generalized method of moments of Hansen (1982), minimizing a quadratic objec-
tive of the pricing errors. The fit of the model is often assessed by the root mean squared
error (RMSE), which is a summary measure of the magnitude of the estimated EE errors.

2.2 Empirical puzzles

It is well established that the C-CAPM with power utility fails in several dimensions, in
particular is incapable of explaining cross-sectional variation in average asset returns.
Using US postwar data, Lettau and Ludvigson (2009, Table 1) showed that the model
generates substantial pricing errors. Moreover, the parameter estimates of the standard
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C-CAPM pricing kernel mt+1/mt = β(Ct+1/Ct )−γ are flawed: β̂ = 1.41, γ̂ = 89.8 in the
case of two asset returns, and β̂= 1.39, γ̂ = 87.2 when adding 6 size and book-to-market
portfolios.

These estimates are inconsistent with standard parameterizations in macro and fi-
nance. A time-discount factor above one implies that households value future consump-
tion more than current consumption, and the estimated parameter of relative risk aver-
sion is far higher than the microeconomic evidence on individuals’ behavior in risky
gambles.

In addition, the pricing errors are economically large. The estimated EE error
amounts to 2.71% (3.05%) p.a. for the two-assets case (the larger cross-section), leaving
a substantial fraction of the cross-sectional variation of average returns unexplained. It
is puzzling to the econometrician why individuals seem to accept surprisingly large and
persistent EE errors. Economically, this result implies that consumers seem to accept a
2.5 dollar pricing error for each 100 dollar spent. Further, it is not possible to reduce the
empirical EE error to smaller magnitudes (or even to zero) by choosing other parameter
constellations. Additionally, Lettau and Ludvigson (2009) convincingly argue that many
of the newly proposed extensions to the C-CAPM, in particular the prominent long-run
risk model (Bansal and Yaron (2004)), are not capable of rationalizing the large pricing
errors of the canonical model.

3. Asset pricing with rare events

In this section, we present two asset pricing models to compute equilibrium consump-
tion growth and asset returns and that provide our framework to rationalize EE errors:
the first one is a simple Lucas’ endowment model with constant investment opportuni-
ties; the second one is an endowment economy with changing investment opportunities
that mimics the equilibrium dynamics of a production economy. Both models shed light
on different aspects of the puzzle and provide directions for empirical research. A com-
plete description of the models and of their equilibrium implications can be found in
Appendices A.2 and A.3.

3.1 Lucas’ endowment economy with rare events

Consider a representative-agent, fruit-tree economy of asset pricing with exogenous and
stochastic production. Similar to Barro (2006), production is subject to rare events in
the form of large negative shocks arriving at a constant rate. Gabaix (2008) and Wachter
(2013) considered the case of time-varying arrival rates and recursive preferences.5

Technology Suppose that production of perishable output,Yt , is exogenously given (cf.
Lucas (1978)): no resources are utilized, and there is no possibility of affecting the output
at any time. The law motion of Yt follows the Markov process

dYt = μtYt dt + σtYt dBt + (Yt −Yt− )dNt , (7)

5Favero et al. (2020) showed that such rare disaster models satisfy the Hansen and Jagannathan (1991)
bounds. However, both features are not required in generating EE errors.
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where μt denotes the drift, σt represents the size of the shocks, Bt is a standard Brow-
nian motion, and Nt is a Poisson process with arrival rate λ. In the simple endowment
economy, we set μt ≡ μ̄ and σt ≡ σ̄ . Moreover, the jump size is set to be proportional to
the value of output an instant before the jump, Yt −Yt− ≡ (exp(ν̄) − 1)Yt−, ν̄ < 0, where
Yt− denotes the left-limit,Yt− ≡ limτ→t Yτ , for τ < t, ensuring thatYt does not jump neg-
ative. Thus, the investment opportunity set in this endowment economy is assumed to
be constant.

Preferences Consider an economy with a single consumer, interpreted as a representa-
tive of a large number of identical consumers. The representative consumer maximizes
expected lifetime utility (cf. Svensson (1989), Duffie and Epstein (1992b)),

U0 ≡E0

∫ ∞

0
f (Ct ,Ut )dt, (8)

where f (Ct ,Ut ) is a normalized aggregator given by

f (Ct ,Ut ) = 1 − γ
1 − 1/ψ

Ut
(
C

1−1/ψ
t − ρ((1 − γ)Ut

) 1−1/ψ
1−γ )(

(1 − γ)Ut
)− 1−1/ψ

1−γ (9)

with ρ > 0 the subjective rate of time preference, γ > 0 the coefficient of relative risk
aversion, and ψ> 0 the elasticity of intertemporal substitution.6

The general utility function (8) is introduced here to compare our rare events mod-
els with the main competitor, the long-run risk model of Bansal and Yaron (2004). To
obtain analytical results in the rare event models, we set 1/ψ = γ, but our insights for
the pricing errors do not depend on the parametric restriction, which can be relaxed at
the cost of analytical tractability. Setting 1/ψ= γ makes the recursion in (9) linear, and
the preferences in (8) collapse to the standard time-additive model with

f (Ct ,Ut ) = C
1−γ
t

1 − γ − ρUt ⇒ U0 ≡E0

∫ ∞

0
e−ρt C

1−γ
t

1 − γ dt. (10)

Equilibrium In this economy, it is straightforward to determine equilibrium quanti-
ties and the equilibrium asset holdings. The economy is closed and all output will be
consumed, Ct = Yt , and all shares held by capital owners are in zero net supply.

3.2 A mimicking endowment economy with rare events

Consider an endowment economy mimicking the equilibrium dynamics of a produc-
tion economy that is subject to rare disasters in the accumulation of the capital stock
as in Gourio (2012), and rare technological improvements (cf. Wälde (2005)).7 The pro-
duction economy underlying this mimicking endowment economy is described in Ap-
pendix A.3. Below we use the terms mimicking endowment economy and production

6In contrast to Duffie and Epstein (1992a) and Wachter (2013), here ρ multiplies with the second part.
Both formulations generate ordinal-equivalent utility functions, and hence the same equilibrium dynam-
ics, though the value function may differ by a scale factor.

7Embedding disasters in a general equilibrium production economy with heterogeneous firms induces
strong nonlinearity, which helps replicating the failure of the C-CAPM in explaining the value premium in
samples in which disasters are not materialized (cf. Bai et al. (2019)).
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economy interchangeably, but the equilibrium dynamics coincide only for a particular
ρ (as shown in Proposition A.9).

Technology Suppose that production of perishable output, Yt , is exogenously given:
there is no possibility of affecting the output at any time. Let Yt = (1 − s)AtKαt , whereKt
is the aggregate capital stock, At is the stochastic technology, s ∈ (0, 1) is the constant
propensity to consume, and α ∈ (0, 1) is the capital share in aggregate output.8

The law of motion of At will be taken to follow a Markov process, driven by a stan-
dard Brownian motion Bt , and a Poisson process N̄t with arrival rate λ̄,

dAt = μ̄At dt + σ̄At dB̄t +
(
exp(ν̄) − 1

)
At− dN̄t . (11)

We introduce jumps in technology as there is empirical evidence of Poisson jumps
in output growth. However, these may not necessarily reflect consumption disasters
(Posch (2009)).

The aggregate capital stock is subject to stochastic depreciation,

dKt =
(
sAtK

α
t − δKt

)
dt + σKt dZt +

(
exp(ν) − 1

)
Kt− dNt , (12)

where δ > 0 is the depreciation rate of physical capital, Zt is a standard Brownian mo-
tion, andNt is a Poisson process (both uncorrelated with B̄t and N̄t ) with constant arrival
rate λ and ν < 0. The jump size in capital is assumed to be proportional to the value of
the capital stock an instant before a disaster, and it has a degenerated distribution. For
σ = ν = 0, the capital stock (physical asset) would be instantaneously riskless (cf. Merton
(1975)).

Hence, output in this mimicking endowment economy follows:

dYt = μtYt dt + σtYt dBt + (Yt −Yt− )(dN̄t + dNt ) (13)

with μt = μ̄+ srt −αδ+ 1
2α(α− 1)σ2, σt ≡ σ̄ , Bt = B̄t +σα/σ̄Zt , and where rt = αAtKα−1

t

evolves according to

drt = c1(c2 − rt )rt dt + (α− 1)σrt dZt + σ̄rt dB̄t
+ (

exp
(
(α− 1)ν

) − 1
)
rt− dNt +

(
exp(ν̄) − 1

)
rt− dN̄t (14)

with c1 ≡ 1−α
αγ and c2 ≡ αγδ− 1

2αγ(α−2)σ2 − αγ
α−1 μ̄. Note that the mimicking endowment

economy introduces a stochastically changing investment opportunity set through μt .

Preferences The representative consumer maximizes expected discounted lifetime
utility given in (8) and (9). Further assume that 1/ψ = γ such that the problem is re-
duced to the standard power utility case in (10).

8For convenience, we setYt = Ct in the mimicking endowment economy, though “output” in the produc-
tion economy is higher by a factor 1/(1− s). In the Appendix, we present an alternative mimicking economy
where the endowment is a linear function of the aggregate capital stock, Yt = kKt with k > 0.
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Equilibrium In this economy, it is straightforward to determine equilibrium quantities
and the equilibrium asset holdings. The economy is closed and all output will be con-
sumed, Ct = Yt , and households own the physical capital. All other assets are zero in net
supply.

4. Results

In what follows, we use equilibrium consumption growth rates and asset returns to com-
pute EE errors in both the endowment and the production economy. Moreover, we pro-
vide directions for empirical research for using GMM, and report empirical estimates.

Letφ denote the parameter vector and ht = ht(φ) a vector of martingale increments
(moment conditions) in terms of data and parameters generated by the model. Further,
let

HT (φ) =
T∑
t=1

ht(φ),

so that HT (φ)/T is the sample average of {ht(φ)}. We define the GMM estimator as the
minimizer of the squared normHT (φ)	WHT (φ), whereW is a weight matrix, using the
identity matrix Idim(h) for W in a first-step minimization, and the estimates, say φ̂0, to
calculate an estimate of Var(HT (φ̂0 ))−1, which then definesW = (

∑
t ht(φ̂0 )ht(φ̂0 )	 )−1

in the next-step minimization (cf. Hansen (1982), Christensen, Posch, and van der Wel
(2016)).

Without loss of generality, we consider annual returns, such that s = t + 1. For the
case of two assets, for example, a bond with return Rbt+1, and an alternative asset with
return Rct+1. Then, for a given sample of data ht+1(φ) can be constructed for the canon-
ical C-CAPM model using (3):

ht+1(φ) =
(
ebR,t+1
ecR,t+1

)
=

(
β(Ct+1/Ct )−γRbt+1 − 1
β(Ct+1/Ct )−γRct+1 − 1

)
, (15)

or, alternatively using (4):

ht+1(φ) =
(
ecX ,t+1
eiR,t+1

)
=

(
β(Ct+1/Ct )−γ

(
Rct+1 −Rbt+1

)
β(Ct+1/Ct )−γRit+1 − 1

)
,

based on excess returns and one additional asset i, where φ= (β, γ)	.
Although previous work has emphasized that GMM is not the optimal choice for the

econometric estimation in the presence of unobserved regime shifts and peso problems
(Kocherlakota (1997), Saikkonen and Ripatti (2000)), we estimate the unknown parame-
tersφ= (β, γ)	 of the canonical C-CAPM using the standard GMM approach. The main
reason is that we are not primarily interested in estimating the rare disaster model. In-
stead, we ask whether we can replicate the empirical patterns by using the GMM ap-
proach (cf. Lettau and Ludvigson (2009)) and the potentially misspecified moment con-
ditions (15).
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4.1 Euler equation errors in finite samples

In this section, we show that pricing errors can be substantial in finite samples. We also
illustrate how pricing errors may emerge as a result of various types of rare events, such
as default risk, and/or rare improvements in the technology frontier.

Proposition 4.1 (Endowment economy). Consider the model outlined in Section 3.1
with preferences in (10) such that the utility function exhibits constant relative risk aver-
sion γ. Then the Euler equation error (3), when conditioning on samples without disas-
ters, on

1. the asset with payoffXc
t+1 = Yt+1 and return Rct+1 =Xc

t+1/P
c
t is

ecR|Nt+1−Nt=0 = exp
((

1 − e(1−γ)ν̄)λ) − 1; (16)

2. the bond with payoffXb
t+1 = e

∫ t+1
t ln(1+Ds )dNs subject to default riskDs = eκ−1 where

κ < 0 with probability q in case of a disaster and return Rbt+1 = 1/Pbt is

ebR|Nt+1−Nt=0 = exp
((

1 − e−ν̄γ)λ+ e−γν̄(1 − eκ)qλ) − 1, (17)

where κ is the size of the default, and q ∈ [0, 1] is the probability of default;

3. the risk-free asset with payoffXf
t+1 = 1 and return Rft+1 = 1/Pft is

e
f
R|Nt+1−Nt=0 = exp

((
1 − e−ν̄γ)λ) − 1. (18)

Proof. See Appendix A.2.4.

For λ= 0.017 and ν̄ = −0.4 (cf. Barro (2006)), the absolute EE error on a risky claim is
about 3.9% for γ = 4 and would further increases with risk aversion. We argue that the EE
errors can be large in finite samples and that empirical pricing errors measure disaster
risk. Our results in Proposition 4.1 show that individuals would accept persistent pricing
errors for the events that happen not to occur in normal times.9 In fact, the probability
of no disaster occurring in a randomly selected sample of 50 years is p(Nt+T −Nt = 0) =
e−λT = 43%.

Based on the excess return of a risky asset over a bond, we obtain (4) as

ecX|Nt+1−Nt=0 = ecR|Nt+1−Nt=0 − ebR|Nt+1−Nt=0 = e(1−e(1−γ)ν̄ )λ − e(1−e−ν̄γ )λ+e−γν̄(1−eκ )qλ.

Hence, any default risk would also rationalize the occurrence of EE error in quiet times.
However, the default risk per se only generates pricing errors for the bond.10 These re-
sults point to an interesting direction for empirical research because, by having more

9 This result relates to Hansen and Jagannathan (1991, p. 250), who note that the sample volatility may
be substantially different than the population volatility if consumers anticipate that extremely bad events
can occur with small probability, even when such events do not occur in the sample.

10For the extreme case κ→ −∞ (complete default) and default with probability q= 1 in case of a disaster,
the rational pricing error is approximately λ, that is, the arrival rate of disasters/defaults.
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assets in the sample, we may identify additional parameters including the default risk q.
Below we estimate the disaster risk along with the standard parameters (cf. Table A.2).

One alternative interpretation of the pricing errors is through the implicit risk pre-
mium, that is, the difference between the expected value of an uncertain rate of return
and the certainty equivalent rate of return which makes an individual indifferent be-
tween both assets,

RP = γσ̄2 + e−γν̄(1 − eν̄)λ= γσ̄2 + log
((

1 + ecR
)
/
(
1 + efR

))
. (19)

Hence, in the endowment economy, the ratio of pricing errors in (19) measures the im-
plicit risk premium RP related to the disaster risk (cf. Posch (2011)).

Proposition 4.2 (Production economy). Consider the model outlined in Section 3.2
with preferences in (10) such that the utility function exhibits constant relative risk aver-
sion γ. Then the Euler equation error (3), when conditioning on samples without disas-
ters, on

1. the asset with payoffXc
t+1 =Kαγt+1 and return Rct+1 =Kαγt+1/P

c
t is

ecR|Nt+1−Nt=0 = 0; (20)

2. the bond with payoffXb
t+1 = e

∫ t+1
t rs ds and return Rbt+1 =Xb

t+1/P
b
t is

ebR|Nt+1−Nt=0 = exp
((

1 − e−αγν)λ) − 1. (21)

Proof. See Appendix A.3.4.

The results in Proposition 4.2 indicate that the risky bond carries pricing errors while
the risky claim does not generate persistent pricing errors. The intuition behind this re-
sult is that in case of disasters, the SDF rises (consumption drops sharply, marginal util-
ity rises), while the return on the claim falls sharply and would exactly offset the previous
effect, hence the net effect on the EE error is zero. In contrast, the return on the bonds
would not be affected instantaneously, so in periods without disasters, the average EE
errors are negative (empirical estimates are shown in Table A.1, column EE errors).

Three remarks are noteworthy. First, EE error in (20) shows that rare events may not
be relevant for moment conditions of particular assets, and will not generate persistent
pricing errors. Here, the assets were chosen to obtain analytical expressions for EE er-
rors. Second, based on excess returns we may still rationalize finite sample EE errors for
excess returns,

ecX|Nt+1−Nt=0 = −ebR|Nt+1−Nt=0.

Third, low-probability events such as bonanzas are also candidates for generating EE
errors if the sample average is not the population mean, but less likely to drive our re-
sults.11

11Pricing errors may result from rare improvements in technology (e.g., cyclical growth as in Wälde
(2005)). Hence, ec

R|N̄t+1−N̄t=0
= exp((1 − e−γν̄ )λ̄) − 1, can be either positive or negative in times without

innovations.
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Given the EE errors, the root mean square error (RMSE) is calculated and interpreted
as a measure of the magnitude of mispricing across assets.12 The (true) RMSE is defined
as the square root of the average squared (mean) EE errors across assets,

RMSE = (
(1/N )HT (φ)	HT (φ)

) 1
2 /T . (22)

4.2 Identifying the source of the bias

In what follows, we illustrate the implications for the estimated pricing errors for endow-
ment and production economies. As we show below, the misspecified moment condi-
tion leads to incorrect (biased) parameter estimates. While for the simple endowment
economy with constant risk-free rates the GMM objective forces estimated EE errors to
zero, we show why such errors may arise in an endowment economy with time-varying
interest rates.

For illustration purposes, let us consider a claim on a risky asset and bond with de-
fault risk in the endowment economy. Use the definition of the estimated EE errors in (5),
together with equilibrium process for consumption growth, ln(Ct+1/Ct ), and the one pe-
riod gross returns on these assets, Rct+1 and Rbt+1, respectively (see Appendix A.2). Then,
conditional on no disasters, we obtain the following estimated EE errors:

êcR|Nt+1−Nt=0 = (β̂/β) exp
(

(γ− γ̂)

(
μ̄− 1

2
σ̄2

)
− 1

2

(
(1 − γ)2 − (1 − γ̂)2)σ̄2

)
× exp

((
1 − e(1−γ)ν̄)λ) − 1,

êbR|Nt+1−Nt=0 = (β̂/β) exp
(

(γ− γ̂)

(
μ̄− 1

2
σ̄2

)
− (
γ2 − γ̂2)1

2
σ̄2

)
× exp

((
1 − (

1 − (
1 − eκ)q)e−γν̄)λ) − 1.

The result shows that by minimizing the empirical EE errors, the parameter estimates
are typically biased for (1−e(1−γ)ν̄ )λ 
= 0 and (1− (1− (1−eκ )q)e−γν̄ )λ 
= 0, respectively.

Now the GMM objective is to choose parameters φ̂ such as to minimize the RMSE in
(22). In particular, we encounter the square root of the average squared (mean) EE error

R̂MSE = (
(1/N )HT (φ̂)	HT (φ̂)

) 1
2 /T .

Therefore, the EE puzzle is not really about how to generate pricing errors, but rather
how to generate estimated EE errors in finite samples. Consider the case ν̄ < 0 (and
κ < 0). The EE error for the risky asset (conditional on no disasters) in (16) is positive for
γ < 1, whereas negative for γ > 1. For the riskless asset in (17), this EE error on average is

12To give a sense of how large pricing errors are, the RMSE is often reported relative to the returns of the
assets. We define the square root of the average squared (mean) returns (RMSR) as

RMSR = (
(1/N )R	

T RT
) 1

2 /T ,

where RT /T is the sample average of theN-vector of asset returns {Rt }.
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negative in quiet times for reasonable parameterizations. The bias in the parameter esti-
mates should eliminate such pricing errors. In fact, the estimated EE error is eliminated
for

γ̂ = γ− (
e(1−γ)ν̄ − e−γν̄ + (

1 − eκ)qe−γν̄)λ/σ̄2,

β̂ = βexp
(

(γ− γ̂)

(
μ̄− 1

2
σ̄2

)
− (
γ2 − γ̂2)1

2
σ̄2 − ((

1 − (
1 − eκ)q)e−γν̄ − 1

)
λ

)
.

The reason for this result is that the risk premium (19) generated by disaster risk is
captured by the degree of Gaussian uncertainty determined by σ̄2, and an estimate of
risk aversion γ̂. In this example, the (asymptotic) bias of the parameter estimate for γ
amounts to

γ− γ̂ = −(
e−γν̄

(
1 − eν̄) − (

1 − eκ)qe−γν̄)λ/σ̄2, (23)

which for q= 0 is unambiguously negative (γ̂ > γ), while it increases in λ and decreases
in σ̄ . Our results show that the larger the disaster risk premium, the larger the absolute
bias in the estimate of γ. Moreover, the bias will be larger for σ̄2 being close to zero.

Our analytical result in (23) not only explains the bias in the parameter estimates, it
also shows how the estimated EE error in models with rare events and with constant in-
vestment opportunities μ̄ can be eliminated (up to numerical accuracy). Intuitively, the
risk premium from Gaussian uncertainty needs to account for the disaster risk premium
in the data, which works through a large estimate of risk aversion γ̂ for given σ̄ .

For changing investment opportunitiesμt , however, the GMM objective might fail to
eliminate estimated EE errors. As we show below in simulations, the endowment econ-
omy mimicking a production economy with time-varying interest rate dynamics as in
(14) can generate estimated EE errors, because the bias in the parameter estimates of-
ten cannot eliminate the average pricing errors for given σ̄2 in the GMM objective.

4.3 Resolving the misspecification

In this section, we discuss three potential solutions to the pricing error puzzle, when
the risk of rare disasters is present. First, we may go for longer samples in which rare
disasters are included.13 Second, we may use samples without disasters and modify the
moment condition. Third, we may allow for a constant term which accounts for unex-
plained risk premia.

4.3.1 Long samples Because the property we are describing is a short-sample phe-
nomenon, it is tempting to go for longer samples. It is worth making two points about
this approach. First, in cases where the longer sample does not include sufficiently large
consumption disasters, this approach would not help. For example, the US did not ex-
perience consumption disasters of the magnitude used in the illustration above over
the period 1900–2008 (including the Great Depression). Second, even if rare disasters

13Note that a cross-sectional approach would not be able to match the population conditions, unless we
can infer the jump probabilities (and jump sizes) from the data and correctly specify the moment condi-
tions.
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were included in the sample, it would be rather a coincidence if their sample frequency
matched the population frequency for the given parameterization.

To illustrate this point, with λ= 0.017 (cf. Barro (2006)), we expect 1.7 disasters in 100
years of data. Therefore, we would need exactly one disaster for a sample of 60 years, or
2 disasters for a sample of 120 years of data. Taking this point seriously, longer samples
may help to reduce the bias (and pricing errors) but given data availability will eventu-
ally fail. Because the data generating process gives rise to peso problems, the moment
conditions for the estimation of the C-CAPM are likely to be incorrectly specified.

4.3.2 Resuscitating the moment conditions Recall that the problem with the C-CAPM
estimation is that in samples with no disasters, the estimates for the parameter vector
φ = (β, γ)	 are biased because the moment conditions are not correctly specified. In
such samples, we need to correct for the conditional pricing errors in (16) and (17) for
the endowment economy, or in (20) and (21) for the production economy, such that the
correct moment condition for the two assets reads

h̃t+1 =
(
ebR,t+1 − ebR|Nt+1−Nt=0

ecR,t+1 − ecR|Nt+1−Nt=0

)
=

(
β(Ct+1/Ct )−γRbt+1 − 1 − ebR|Nt+1−Nt=0

β(Ct+1/Ct )−γRct+1 − 1 − ecR|Nt+1−Nt=0

)
, (24)

and thus, any remaining EE pricing error (corrected for the disaster risk) should be zero.
Generally, the correction will depend on the parameter vector φ, which makes the ad-
justment dependent on the particular model (and assets) at hand. Below we report the
empirical results for the endowment economy and the production economy.

This approach becomes relevant when the researcher can safely assume that con-
sumption disasters have not occurred in the sample (henceforth “conditional GMM”),
which essentially can be interpreted as a bias correction. Restricting the attention to
quiet times is not a panacea, though, as it requires a judgement based on data prior to
estimation. Moreover, in long samples, which include rare disasters, the moment con-
ditions would then not be correctly specified and conditional GMM does not help to
get unbiased estimates. Further challenges are that the correction depends on (1) the
underlying model (endowment vs. production), (2) the particular asset class (bonds vs.
claims), and (3) the particular calibration of parameters (arrival rate and size of dis-
asters). To get an idea on how sensitive the results are with respect to the underlying
model, we compare the results of two different models in order to get an idea on the
consequences of a specific moment condition.

From the moment conditions (24), we see that this approach requires fixing some of
the structural model parameters. These moment conditions depend on the particular
asset under consideration. If the asset is subject to default risk, we need to account for
this risk in the moment condition. One direction for research would be to use different
assets that carry different risk premia to identify and estimate such parameters, includ-
ing those determining the risk of disasters (the distribution, size and/or the frequency
of disasters).

4.3.3 Include constants One issue with resolving the misspecification by subtracting
the known EE errors is that they are model-specific and depend on the particular asset.
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Alternatively, would it be possible to capture the unobserved disaster risk by adding con-
stants? Parker and Julliard (2005) suggested including a constant (for the excess returns)
in order to give the model the ability to explain the equity premium. This procedure
should capture consumption risk, which underpredicts the excess returns of all assets
by the same amount (Parker and Julliard (2005, p. 192)).

Following Parker and Julliard (2005, equation (6)) for the contemporaneous effect,
with just two moment conditions (neglecting default risk), we may fix μ0 and estimate γ
and α0 using

h̄t+1 =
(
R
f
t+1(Ct+1/Ct )−γ

(
Rct+1 −Rft+1

)
/μ0 − α0

R
f
t+1(Ct+1/Ct )−γ −μ0

)
.

Only if theoretical and sample moments were the same, the constant α0 would be zero.
Hence, the constant α0 measures the ex post mispricing for the excess return.

Following this idea, we may fix γ and estimate separately the disaster risk adjust-
ments α1 and α2.14 The correct moment condition accounts for the EE errors,

h̄t+1 =
(
ebR,t+1 − α1

ecR,t+1 − α2

)
=

(
β(Ct+1/Ct )−γRbt+1 − 1 − α1

β(Ct+1/Ct )−γRct+1 − 1 − α2

)
(25)

or

h̄t+1 =
(

(Ct+1/Ct )−γRbt+1 − (1 + α1 )/β
β/(1 + α1 )(Ct+1/Ct )−γRct+1 − 1 − α0

)
, (26)

where we fix β/(1 + α1 ) instead and estimate γ together with α0 = (1 + α2 )/(1 + α1 ) −
1. The estimates give an empirical measure of the mispricing for the two assets under
consideration for a given parameterization for β and γ. This provides some indication
on whether the disaster risk underpredicts excess return by the same amount or not.

For the endowment economy, we may infer λ and ν̄ (suppose the default risk q is
zero), conditional on a sample without consumption disasters,

e
f
R|Nt+1−Nt=0 − α1 = exp

((
1 − e−ν̄γ)λ) − 1 − α1 = 0

⇔ exp
((

1 − e−ν̄γ)λ) = 1 + α1

⇔ (
1 − e−ν̄γ)λ= log(1 + α1 ) (27)

and

ecR,t+1 − α2 = exp
((

1 − e(1−γ)ν̄)λ) − 1 − α2 = 0

⇔ exp
((

1 − e(1−γ)ν̄)λ) = 1 + α2

⇔ (
1 − e(1−γ)ν̄)λ= log(1 + α2 ) (28)

such that (
1 − e(1−γ)ν̄) − (

1 − e−ν̄γ) = log
(
(1 + α2 )/(1 + α1 )

) ≈ α0 (29)

14Restricting the yet unknown parameters is only necessary in the two-asset case. In a larger cross-
section, we estimate the disaster risk adjustments α1 and α2 together with β and γ (see Table A.2).
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gives an empirical measure of the disaster risk premium in (19). Below we provide esti-
mates of the disaster risk along with the standard parameters (cf. Table A.2). If we ob-
tained a measure of that premium from other sources (e.g., inferred from derivatives),
we may subtract the sample mean of the moments in a two-step procedure.15

4.4 Data

In what follows, we present the data for our empirical estimates of the C-CAPM param-
eters and show how the results are affected by peso problems in the estimation.

For financial data, we use US postwar quarterly returns (1951:Q4–2016:Q4) on a
broad stock market index return (CRSP value-weighted price index return, Rmt ), and
the short-term bond return from US Treasury-Bills (3-month rate, Rbt , henceforth T-
Bill).16 We also show results when including 6 size and book-to-market Fama-French
portfolios, RFF

t . For a longer (and international) sample, we use the annual returns from
Global Financial Data (1900–2008) for a selected set of 6 countries including the United
States (US), Canada (CAN), Germany (GER), Italy (ITA), Japan (JAP), and United King-
dom (UK).17

For consumption, we use the real (chain-weighted) personal consumption expendi-
tures on nondurable goods and services per capita at a quarterly frequency (1951:Q4–
2016:Q4).18 We use the (standard) timing convention that consumption takes place at
the end of a period. For the longer (international) sample, we use consumption data
from the Barro and Ursúa (2008) macroeconomic data set.19

4.5 Empirical results

In this section, we provide some empirical estimates of pricing errors. For conditional
GMM (where we condition on a sample without disasters), we show the results for both
the simple endowment and time-varying endowment economy (mimicking a produc-
tion economy).

First, we confirm economically large unconditional estimated EE errors of 4.5% p.a.,
similar to Lettau and Ludvigson (2009), for the postwar US data (annual) from 1951–
2008 (cf. Table A.1, column GMM). For the international (longer) sample, we find large
RMSE for CAN, GER, ITA, and JAP ranging from 4.8% to 9.3% p.a. Our empirical results
also show that the model does not necessarily produce large estimated EE errors for all
samples, that is, across different time spans and/or countries. A generally more robust
result is that the parameter estimates seem to be severely biased for different sample

15Sönksen and Grammig (2021) proposed a similar two-step simulation-based strategy to estimate rare
disaster risk models.

16Board of Governors of the Federal Reserve System, 3-Month Treasury Bill [TB3MS], retrieved from
FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/TB3MS.

17Global Financial Data: https://www.globalfinancialdata.com.
18US Bureau of Economic Analysis, Real personal consumption expenditures per capita: Nondurable

goods [A796RX0Q048SBEA], retrieved from FRED; https://fred.stlouisfed.org/series/A796RX0Q048SBEA.
19Barro–Ursúa Macroeconomic Data: https://scholar.harvard.edu/barro/data_sets.

https://fred.stlouisfed.org/series/TB3MS
https://www.globalfinancialdata.com
https://fred.stlouisfed.org/series/A796RX0Q048SBEA
https://scholar.harvard.edu/barro/data_sets
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periods and across countries (consistent with the findings in the literature). The bias
tends to be larger for the shorter (postwar) data relative to the longer sample.

The next 6 columns (columns conditional GMM) report the GMM estimates and es-
timated EE errors with the respective theoretical (model-specific) correction for the two
models. Here, we resolve the empirical problems for the postwar samples, that is, the es-
timated EE errors are eliminated, and the parameter estimates for both time preference
and risk aversion of the canonical model are much more plausible for both the sim-
ple endowment and the time-varying endowment economy (column production). For
the longer sample, two observations are remarkable. We did not expect the correction to
work properly for a sample that includes disasters (the condition requires to exclude dis-
asters), as is the case at least for GER and JAP between 1900 and 1950. For the suggested
bias correction, we should pick a sample without disasters to correctly adjust the sample
mean. In fact, the conditional GMM estimates for GER still produce economically large
EE errors of nearly 4.0% p.a.

In the next 3 columns (columns EE errors), we report the GMM estimates for the dis-
aster risk adjustments, α0 and α1 and the estimated EE errors, for given parameter values
for time preference and risk aversion. For the case of GER, the estimated disaster risks
adjustments are orders of magnitudes higher than other estimates. This may indicate
that the sample frequency of disasters was even higher than the population frequency
in the longer sample 1900–2008. Recall that the sample includes two severe World War
episodes, hyperinflation and the Great Depression with large capital stock destruction
and/or consumption disasters. In the postwar period (1951–2008) where we can safely
ignore severe disasters, the estimated disaster risk adjustments are more plausible, but
largest for GER and JAP.

The last 3 columns (columns Parker/Julliard) report the GMM estimates for the con-
stant α0 and estimated EE errors assuming a production economy (fixing the rate of
time preference). Based on the postwar sample, the average disaster risk premium for
the T-Bill is about the order of magnitude of Barro’s parameterization, ranging from 5.1%
(CAN) to 11.7% (GER). For the US, we get similar estimates about 6.6% for the postwar
annual data.

For the larger cross-section, when we add 6 Fama-French (FF) portfolios sorted by
size and book-to-market, a similar picture emerges (cf. Table A.2). Again, the standard
GMM approach gives biased estimates: β̂= 0.84, γ̂ = 147.1 with EE errors of about 1.7%.
The estimated EE errors for plausible parameters of time preference and risk aversion
are economically important, but differ substantially across assets. Being consistent with
our theoretical result that EE depend on the specific asset at hand, it challenges the as-
sumption that portfolio returns are underpredicted by the same amount (cf. Parker and
Julliard (2005, p. 193)). Given that for three FF portfolios (i.e., Big Value, Big Neutral, and
Small Value) the EE errors are estimated at similar orders of magnitude, we also esti-
mate EE errors by imposing the restriction α3 = α4 = α6. This restriction enables us to
estimate the parameters β and γ along with the risk adjustments for the bond, the risky
asset and of 4 FF portfolios. Once we account for the EE errors, we get more plausible
parameter estimates: β̂= 0.99, γ̂ = 4.6 with EE errors of 0.3%. For the endowment econ-
omy, the implied average size of disasters from (27) and (28) then is ν̄ = −0.53 and ar-
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rival rate λ= 0.015. These estimates are in line with the empirical measures of disasters
in Barro (2006).

4.6 Simulation results

In this section, we investigate whether it is possible to reproduce the empirical failure of
the C-CAPM by using simulated data in models with either rare events or long-run risk.
After simulating the data, we estimate the parameters of a power utility C-CAPM pric-
ing kernel whose parameters an econometrician would estimate when she is confronted
with the data similar to Lettau and Ludvigson (2009). We are mainly interested in inves-
tigating whether the models generate estimated pricing errors using the data where we
condition on no disasters. Does a misspecified pricing kernel—despite the biased esti-
mates for time preference and risk aversion parameters—generate EE errors? Hence, we
shed light on the performance of C-CAPM estimation regarding the bias and plausibility
of estimated structural parameters in the presence of a “peso problem.”

We simulate equilibrium paths for asset returns for a risky claim, Rct+1, and risky
bond, Rbt+1, as well as for consumption growth, log(Ct+1/Ct ), from the parameterized
consumption-based models with rare events. We consider both the simple endowment
economy and the mimicking production economy presented in Section 3, for which we
provide analytical expressions for asset prices (see Appendices A.2 and A.3). Consistent
with the sample size in empirical studies of the C-CAPM, the simulated sample path
of each of the 5000 Monte Carlo draws has a length of 50 years. The parameterization
of the models is summarized in Tables A.3 and A.4. They follow the literature on rare
events in endowment and production economies, respectively (see, e.g., Barro (2009),
Posch (2009), and Wachter (2013)).20

In Tables A.6 to A.9, we report the results from the Monte Carlo simulations. Our
main quantities of interest are the average pricing error (RMSE), that is, the EE errors,
the estimated EE errors (R̂MSE), that is, a measure of estimated pricing errors, and the
parameter estimates β̂ and γ̂ obtained by fitting a power utility C-CAPM to the simu-
lated data. In addition, we report the distributional properties of asset returns, equity
premium, and consumption growth (in annualized percentage terms). For ease of read-
ability, we report results conditional on the case of no disasters, that is, only for those
cases in which no disaster happened to occur over the 50 years period even though such
diasters were expected by the market participants ex ante (peso problem).21 Condition-
ing on no disasters is interpreted as studying a sample such as the postwar period with-
out major consumption disasters (Barro (2006)). The simulations also include more fre-
quent low-probability events, that is, “smaller” jumps in productivity, without changing
our main results (cf. Tables A.8 and A.9). Hence, only rare disasters with major economic
consequences rationalize large empirical EE errors.

20Julliard and Ghosh (2012) criticized the calibration of one-year contractions as being equal to the cu-
mulated multi-year contractions recorded in the data. As illustrated in Tsai and Wachter (2015), with clus-
tering of shocks and Epstein–Zin preferences, rare event models still produce a sizeable risk premium.

21For illustration, the unconditional results, and simulation results for different parameterizations,
and/or scenarios can be found in the Online Supplementary Material (see Section B.3, Parra-Alvarez, Posch,
and Schrimpf (2022)).
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Our results support our claim that peso problems can have a strong impact on the
estimates of structural parameters and pricing errors. For example, relative to the en-
dowment economy with zero probability of rare disasters (cf. Table A.7), the endowment
economy with low probability consumption disasters in Table A.6 on average generates
severely biased parameter estimates of β̂ = 1.17 and γ̂ = 804.6. While we do not find
(estimated) pricing errors of the C-CAPM in the endowment economy, we find substan-
tial pricing errors in the endowment economy mimicking a production economy. Our
results in Tables A.8 and A.9 show that the C-CAPM (with power utility) generates large
pricing errors on average between 2% and 2.4% (indicated by R̂MSE in the tables), of
similar size as the 2.5% observed in the data. Thus, departures from log-normality in
the cases where we conditioned on no disasters, for example, through to changing in-
vestment opportunities in the production economy, seem to be important to generate
estimated EE errors.

Our economies with rare events are parameterized to γ = 4 for the coefficient of rela-
tive risk-aversion and β= 0.97 for the subjective time discount factor. Yet, if anticipated
consumption disasters do not occur in sample, we obtain the biased and implausible
parameter estimates that are well known from empirical results in the literature. Our
simulation results suggest that such biased and implausible parameter estimates are
not surprising in a world where agents are concerned about rare negative consumption
shocks.

Finally, we repeat our experiment by simulating equilibrium paths for asset prices
and consumption from the long-run risk (LRR) model with recursive preferences and es-
timate the standard C-CAPM (a description of the model can be found in Appendix A.4).
Tables A.10 and A.11 summarize our findings when the model is parameterized as in
Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012), respectively.22 Similar to
the findings reported in Lettau and Ludvigson (2009), the estimated value for β is close
to its true value, while the estimate for γ is moderately biased. Moreover, the estimated
EE errors are numerically zero, implying that the LRR model is unable to rationalize large
pricing errors despite the model’s stochastically changing investment opportunity set.

To summarize, unlike models of habit formation and/or long-run risk we refer to
in the introduction, models incorporating rare events are able to rationalize the pricing
error puzzle. Although the rare events and long-run risks (LRR) models are considered
as complementary approaches (see Barro and Jin (2021)), the ability of the rare event
model to additionally solve the pricing error puzzle can be used to further discriminate
between the two leading theories of asset pricing. Our result thus complements the liter-
ature by adding a solution to another dimension of the puzzles. At the same time, we find
a severe bias in parameter estimates of the subjective time discount factor and the co-
efficient of relative risk aversion for cases in which consumption disasters do not occur
in the sample. Our results suggest that the Barro–Rietz rare events hypothesis together
with a changing investment opportunity set is able to account for the poor performance
of the C-CAPM.

22Because the true EE error is not available analytically in the LRR model, we report pricing errors as
Rit+1 −E(Rit+1 ) for asset i, respectively, and replace simulated martingale increments ht by the asset returns
in deviation from the unconditional mean values, reported as RMSE∗ in Tables A.10 and A.11.



278 Parra-Alvarez, Posch, and Schrimpf Quantitative Economics 13 (2022)

5. Conclusion

In this paper, we study the impact of rare events (such as wars or natural catastrophes)
on Euler equation (EE) errors and the empirical performance of the consumption-based
asset pricing model in general. For this purpose, we derive analytical asset pricing im-
plications and EE errors both in an endowment as well as a production economy with
stochastically occurring disasters. In extensive simulations, we investigate the impact of
rare events on estimates of structural parameters of the consumption-based CAPM and
the empirical performance of the model. Thus, we seek to provide a better understand-
ing of why the standard model fails so dramatically when fitted to the data.

Allowing for low-probability events in an otherwise standard C-CAPM helps explain-
ing why the canonical model generates large and persistent EE errors when confronted
by the data. Hence, the consumption-based CAPM with rare events qualifies as a class
of models which rationalize pricing errors. Similar to Kocherlakota (1997), we argue that
accounting for rare disasters in the C-CAPM produces reasonable parameter estimates
and explains the pricing errors in the empirical data, which complements the statisti-
cal approach for heavy-tailed distributions with analytical results. We show analytically
and through simulations, based on standard calibrations, that the poor empirical per-
formance and implausible estimates of risk aversion and time preference are not puz-
zling in a world with Barro–Rietz disaster risk. We discuss different approaches of how
the biased estimates can be avoided in empirical research and suggest a simple fix to the
moment conditions by resolving the misspecification in samples without disasters.

Appendix A

A.1 Computing moments

Lemma A.1. The conditional mean of ckNs conditioned on the information set at time t is

Et
[
ckNs

] = ckNt e(ck−1)λ(s−t ), s > t, c, k ∈R,

which for integer k denote the raw moments of cNs .

Proof. We can trivially rewrite ckNs = ckNt c(Ns−Nt )k. Thus, Et[ckNs ] = ckNtEt[c(Ns−Nt )k].
Computing this expectation requires the probability that a Poisson process jumps n
times between t and s. Formally,

Et
[
c(Ns−Nt )k] =

∞∑
n=0

ckn
e−λ(s−t )[(s− t )λ]n

n!

=
∞∑
n=0

e−(s−t )λ[(s− t )ckλ]n
n!

= e(s−t )(ck−1)λ
∞∑
n=0

e−(s−t )λ−(s−t )(ck−1)λ[(s− t )ckλ]n
n!

= e(s−t )(ck−1)λ
∞∑
n=0

e−(s−t )ckλ[(s− t )ckλ]n
n! = e(s−t )(ck−1)λ,
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where e−λs[λs]n
n! is the probability of Ns = n, and

∑∞
n=0

e−(s−t )ckλ[(s−t )ckλ]n
n! = 1 is the proba-

bility function over the support of the Poisson distribution used in the last step.

Corollary A.2. The unconditional mean of ckNs is

E
[
c(Ns−Nt )k] = e(ck−1)λ(s−t ), s > t, c, k ∈R.

A.2 Lucas’ endowment economy with rare events

A.2.1 The model Suppose that the ownership of the exogenously given output Yt is
determined at each instant in a competitive stock market. The production unit has out-
standing one perfectly divisible equity share that entitles its owner to all of the unit’s
instantaneous output in t. Shares are traded at a competitively determined price, Pit ,
evolving according to

dPit = μPit dt + σPit dBt + Pit−Jt dNt , (30)

where Pit− is the price of the asset an instant before a jump.
Following Barro (2006), we also consider a bond with default risk whose price Pbt

evolves according to

dPbt = Pbt r dt + Pbt−Dt dNt , whereDt =
{

0 with 1 − q,

exp(κ) − 1 with q,
(31)

is the default risk in case of a disaster, κ < 0 is the (degenerated) size of the default and
q is the probability of default in case of a disaster. This asset can be thought of as a
government treasury bill. Finally, there is a (shadow) risk-free asset with price dynamics

dP
f
t = Pft rf dt, (32)

in which rf is the continuously compounded risk-free rate. Because prices fully reflect
all available information, μ, σ , Jt , r, and rf will be determined in general equilibrium.

Preferences The economy is inhabited by a single consumer, interpreted as representa-
tive of a large number of identical consumers. Preferences are defined recursively by (8).
For simplicity, we assume γ = 1/ψ, so the normalized aggregator (9) reads f (Ct ,Ut ) =
C

1−γ
t ((1 − γ))−1 − ρUt , and we obtain the same value function as in the case of time-

separable utility with instantaneous utility u(Ct ). In this case, the consumer maximizes

U0 ≡E0

∫ ∞

0
e−ρtu(Ct )dt, u′ > 0, u′′ < 0 (33)

subject to the budget constraint

dWt = (
(μ− r )θtWt + rWt −Ct

)
dt + θtσWt dBt

+ (
(Jt −Dt )θt− +Dt

)
Wt− dNt , W0 ∈R, (34)
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whereWt is real financial wealth, and θt denotes the consumer’s share in the risky asset.
Without loss of generality, we have assumed that there is no immediate access to the
risk-free alternative and there are no dividend payments.

The consumer’s problem can be alternatively formulated in terms of the market
portfolio, with price PM ,t evolving over time according to

dPM ,t = μMPM ,t dt + σMPM ,t dBt − ζM (t− )PM ,t− dNt , (35)

where μM ≡ (μ− r )θt + r, σM ≡ θtσ , and ζM (t ) ≡ (Dt −Jt )θt −Dt . The budget constraint
then reads

dWt = (μMWt −Ct )dt + σMWt dBt − ζM (t− )Wt− dNt , W0 ∈R. (36)

One can think of the original problem with budget constraint (34) as having been
reduced to a simple Ramsey problem, in which we seek an optimal consumption rule
given that income is generated by the uncertain yield of a (composite) asset (cf. Merton
(1973)).23

A.2.2 The Bellman equation and the Euler equation Define the value function as

V (W0 ) ≡ max
{Ct }∞t=0

U0, s.t. (36). (37)

Choosing the control Cs ∈R+ at time s, the Bellman equation reads

ρV (Ws ) = max
Cs

{
u(Cs ) + (μMWs −Cs )VW + 1

2
σ2
MW

2
s VW W

+ (
Eζ

[
V

((
1 − ζM (s)

)
Ws

)] − V (Ws )
)
λ

}
.

Hence, we obtain the first-order condition as

u′(Ct ) = VW (Wt ), (38)

for any t ∈ [0, ∞), making consumption a function of the state variable Ct = C(Wt ).
It can be shown that the Euler equation is given by (cf. Posch (2011))

du′(Ct ) = (
(ρ−μM + λ)u′(Ct ) − σ2

MWtu
′′(Ct )CW

−Eζ[u′(C((
1 − ζM (t )

)
Wt

))(
1 − ζM (t )

)
λ
])
dt

−πtu′(Ct )dBt +
(
u′(C((

1 − ζM (t− )
)
Wt−

)) − u′(C(Wt− )
))
dNt , (39)

where πt ≡ −σMWtu′′(Ct )CW /u′(Ct ) is the market price of risk, and CW is the marginal
propensity to consume out of wealth, that is, the slope of the consumption function.

23We may alternatively consider the portfolio problem and solve for the optimal portfolio weights. The
derivations are available upon request from the corresponding author.
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Proposition A.3 (Optimal consumption-wealth ratio). If utility exhibits constant rela-
tive risk aversion, i.e., −u′′(Ct )Ct/u′(Ct ) = γ, then the optimal consumption-wealth ratio
is constant, Ct/Wt = b, where b≡ (ρ+ λ− (1 − γ)μM − (1 − ζM )1−γλ+ (1 − γ)γ 1

2σ
2
M )/γ.

Proof. The proof closely follows Merton (1971) and Posch (2011).

Equilibrium properties The economy is closed and all output will be consumed, Ct =
Yt . Market clearing implies that consumption growth rates are exogenous. Further, the
risk-free asset is in zero net supply, and all financial wealth is invested in the risky asset,
θ= 1. In the Appendix B.1 of the Online Supplementary Material, we use these equilib-
rium properties to compute the general equilibrium prices μM , σM , and ζM .

A.2.3 General equilibrium consumption growth rates and asset returns

Consumption From the dividend process (7), consumption growth rates are

Ys = Yte(μ̄− 1
2 σ̄

2 )(s−t )+σ̄(Bs−Bt )+ν̄(Ns−Nt ) (40)

⇔ ln(Cs/Ct ) = ln(Ys/Yt ) =
(
μ̄− 1

2
σ̄2

)
(s− t ) + σ̄(Bs −Bt ) + ν̄(Ns −Nt ). (41)

Proposition A.4 (Stochastic discount factor). If utility exhibits constant relative risk
aversion, i.e., −u′′(Ct )Ct/u′(Ct ) = γ, then the stochastic discount factor (SDF) is

ms/mt = e−(r−e−γν̄(1−eκ )qλ+ 1
2 (γσ̄ )2+(e−ν̄γ−1)λ)(s−t )−γσ̄(Bs−Bt )−γν̄(Ns−Nt ), (42)

where r = ρ + γμ̄ − 1
2γ(1 + γ)σ̄2 + λ − (1 − (1 − eκ )q)e−γν̄λ is the continuously com-

pounded equilibrium rate of return of the riskless security that is subject to default risk.

Proof. In general equilibrium, the Euler equation (39) reduces to

du′(Ct ) = (ρ− r )u′(Ct )dt +
(
1 − eκ)u′(eν̄Ct)qλdt − (

u′(eν̄Ct) − u′(Ct )
)
λdt

−πtu′(Ct )dBt +
(
u′(eν̄Ct−) − u′(Ct− )

)
dNt ,

where the deterministic term consists firstly of the difference between the subjective
rate of time preference and the riskless rate; second, a term which transforms this rate
into the certainty equivalent rate of return (shadow risk-free rate), and third, the com-
pensation which transforms the Poisson process to a martingale.

For s ≥ t, the stochastic discount factor is defined by

ms/mt ≡ exp
(

−
∫ s

t

(
ρ− u′′(Cv )Cv

u′(Cv )
μ̄− 1

2
u′′′(Cv )C2

v

u′(Cv )
σ̄2 + 1

2
π2

)
dv

)
× exp

(
−

∫ s

t
πt dBv +

∫ s

t

(
lnu′(eν̄Ct−) − lnu′(Ct− )

)
dNv

)
. (43)

For the case −u′′(Ct )Ct/u′(Ct ) = γ we get u′′′(Ct )C2
t /u

′(Ct ) = γ(1 + γ). Furthermore,
in general equilibrium the market price of risk is given by πt = −γσ̄ . Substitution into
the expression for the SDF yields the desired result.
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Proposition A.5 (Risk-free rate). The instantaneous risk-free rate or the continuously
compounded return to the risk-free asset is

rf = ρ+ γμ̄− 1
2
γ(1 + γ)σ̄2 + λ(1 − e−γν̄). (44)

Proof. Consider an asset with unit payoff Xf
t+1 = 1 for all t, such that the one period

gross return is Rft+1 = 1/Pft . From (2), the equilibrium price of such an asset at time t is

P
f
t = Et

[
ms

mt

]
= e−(ρ+γμ̄− 1

2γσ̄
2 )(s−t )Et

[
e−γσ̄(Bs−Bt )]Et[e−γν̄(Ns−Nt )]

= e−(ρ+γμ̄− 1
2 (1+γ)σ̄2+λ−e−γν̄λ)(s−t ),

where we have used the definition of the SDF (42) and Lemma A.1. For any s > t,

R
f
s = 1/Pft = e(ρ+γμ̄− 1

2 (1+γ)σ̄2+λ−e−γν̄λ)(s−t ) (45)

denotes the one-period holding gross return to the risk-free asset. The desired result

follows by computing rf = log(R
f
s ).

Proposition A.6 (Riskless asset with default risk). The one-period holding gross return

of a riskless asset with payoff Xb
t+1 = e

∫ t+1
t ln(1+Ds )dNs for all t, where Ds captures default

risk in case of disasters as defined in (31) is

Rbt+1 = erf+(1−eκ )qe−γν̄λ+∫ t+1
t ln(1+Dv )dNv . (46)

Proof. Substitute the random payoffXb,t+1 together with the definition of the SDF (42)
into (2), and make use of Lemma A.1, to compute the equilibrium price of the riskless
asset subject to default risk at time t as

Pbt = Et

[
mt+1

mt
e
∫ t+1
t ln(1+Ds )dNs

]
= Et

[
e−(ρ+γμ̄− 1

2γσ̄
2 )−γσ̄(Bt+1−Bt )−γν̄(Nt+1−Nt )er+

∫ t+1
t ln(1+Ds )dNs

]
= e−(ρ+γμ̄− 1

2γσ̄
2 )Et

[
e−γσ̄(Bt+1−Bt )]Et[e(eln(1+Dt )−γν̄−1)λ]

= e−r ,

where r = rf +λq(1 − eκ )e−γν̄ is the face value of the riskless security, that is, the instan-
taneous return received by investors if no default occurs. For any s > t, Rbs = Xb,s/P

b
t

denotes the gross return to the riskless asset that is subject to default risk. The desired
result follows by setting s = t + 1.
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Proposition A.7 (Risky asset). The one-period holding gross return on a claim to a one
period ahead output,Xc,t+1 = Yt+1, is

Rct+1 = eρ+γμ̄− 1
2γσ̄

2− 1
2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+σ̄(Bt+1−Bt )+ν̄(Nt+1−Nt ). (47)

Proof. Substitute the random payoffXc,t+1 together with the definition of the SDF (42)
into (2), and make use of Lemma A.1, to compute the equilibrium price of the risky claim
at time t as

Pct = Et

[
ms

mt
Ys

]
= e−(ρ+(γ−1)μ̄+ 1

2 (1−γ)σ̄2 )(s−t )Et
[
e(1−γ)σ̄(Bs−Bt )]Et[e(1−γ)ν̄(Ns−Nt )]Yt

= e−(ρ−(1−γ)μ̄+ 1
2 (1−γ)σ̄2− 1

2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ)(s−t )Yt .

Then the gross return for any s > t is given by

Rcs = Ys

Pct
= e(ρ+γμ̄− 1

2γσ̄
2− 1

2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ)(s−t )+σ̄(Bs−Bt )+ν̄(Ns−Nt ).

where we inserted (40). The desired result follows by setting s = t + 1.

Proposition A.8 (Future dividends). Consider a claim on the tree (ownership), which
continuously paysXt = Ct . Then the one-period holding return on this asset is given by

Rdt+1 = eρ+γμ̄− 1
2γσ̄

2− 1
2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+σ̄(Bt+1−Bt )+ν̄(Nt+1−Nt ). (48)

Proof. From (2), the price of this claim is given as

Pdt = Et

[∫ ∞

t

ms

mt
Cs ds

]
=

∫ ∞

t
e−(ρ−(1−γ)(μ̄− 1

2 σ̄
2 )− 1

2 ((1−γ)σ̄ )2−(1−e(1−γ)ν̄ )λ)(s−t ) dsCt

= Ct
/(
ρ− (1 − γ)

(
μ̄− 1

2
σ̄2

)
− 1

2

(
(1 − γ)σ̄

)2 − (
1 − e(1−γ)ν̄)λ), (49)

where we assumed ρ− (1 − γ)(μ̄− 1
2 σ̄

2 ) − 1
2 ((1 − γ)σ̄ )2 − (1 − e(1−γ)ν̄ )λ > 0.

Now consider an asset which pays Xt+1 = Pdt+1 = (At+1/At )Pdt , which can be inter-
preted as a future on the ownership in t + 1 (on the tree). From (2), we obtain the price
of this asset in terms of the consumption good with s = t + 1 as

PDt = Et

[
ms

mt
(As/At )Pdt

]
= e−(ρ+(γ−1)μ̄+ 1

2 (1−γ)σ̄2 )(s−t )Et
[
e(1−γ)σ̄(Bs−Bt )]Et[e(1−γ)ν̄(Ns−Nt )]Pdt

= e−(ρ−(1−γ)μ̄+ 1
2 (1−γ)σ̄2− 1

2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ)(s−t )Pdt .



284 Parra-Alvarez, Posch, and Schrimpf Quantitative Economics 13 (2022)

Holding the claim on future dividends (ex dividends), we earn the price changes
when selling the asset in period s, that is the (log-)difference of the price for the future
dividends Pds and Pdt , and the dividend payments, which is the difference of the current
claim on future dividends Pdt and the price of the next periods future dividends PDt (a
future on the tree).24

lnRds =
∫ s

t
d lnPdv + lnPdt − lnPDt

= lnPds − lnPDt

= lnAs − lnAt

+
(
ρ− (1 − γ)μ̄+ 1

2
(1 − γ)σ̄2 − 1

2
(1 − γ)2σ̄2 − (

e(1−γ)ν̄ − 1
)
λ

)
(s− t ),

where again ρ− (1 − γ)(μ̄− 1
2 σ̄

2 ) − 1
2 ((1 − γ)σ̄ )2 − (1 − e(1−γ)ν̄ )λ > 0.

A.2.4 Proof of Proposition 4.1 Substituting the SDF (42) together with the one-period
holding return (47) into (3) yields the ex post pricing error for the risky claim,

ecR,t+1 ≡ e−(1−γ)2 1
2 σ̄

2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt )+(1−γ)ν̄(Nt+1−Nt ) − 1,

such that

ecR =Et
(
ecR,t+1

) =Et
[
e−

1
2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt )+(1−γ)ν̄(Nt+1−Nt )] − 1

denotes the EE error. Conditional on no disasters, we can rationalize pricing errors for
the risky claim

ecR|Nt+1−Nt=0 ≡ Et
(
ecR,t+1|Nt+1 −Nt = 0

)
= Et

[
e−

1
2 (1−γ)2σ̄2−(e(1−γ)ν̄−1)λ+(1−γ)σ̄(Bt+1−Bt )] − 1

= exp
((

1 − e(1−γ)ν̄)λ) − 1.

Similarly, inserting the SDF together with the one-period equilibrium returns on the
government bill in (46) and the risk-free asset (45), we obtain EE errors

ebR = Et
[
ee

−γν̄(1−eκ )qλ−(e−ν̄γ−1)λ− 1
2 (γσ̄ )2−γσ̄(Bt+1−Bt )−γν̄(Nt+1−Nt )+

∫ t+1
t ln(1+Ds )dNs

] − 1,

e
f
R = Et

[
e−( 1

2 (γσ̄ )2+(e−ν̄γ−1)λ)−γσ̄(Bt+1−Bt )−γν̄(Nt+1−Nt )] − 1.

Conditional on no disasters, we can rationalize pricing errors

ebR|Nt+1−Nt=0 = exp
((

1 − e−ν̄γ)λ+ e−γν̄(1 − eκ)qλ) − 1,

e
f
R|Nt+1−Nt=0 = exp

((
1 − e−ν̄γ)λ) − 1.

24Note that ln(Pdt /P
D
t ) = ln(Ct/Pct ) = Ct/P

d
t = ρ− (1 − γ)(μ̄− 1

2 σ̄
2 ) − 1

2 ((1 − γ)σ̄ )2 − (1 − e(1−γ)ν̄ )λ can
be interpreted as the expected return of dividends from t to t + 1.
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A.3 A production economy with rare events

A.3.1 The model Consider a neoclassical production economy subject to rare events
both in the accumulation of capital and the total factor productivity (cf. Posch (2011)).

Technology At any time, the economy employs capital, labor, and knowledge, and these
are combined to produce output. The production function exhibits constant returns to
scale Yt =AtF(Kt , L), where Kt is the aggregate capital stock, L is the constant popu-
lation size, and At is the stock of knowledge or total factor productivity (TFP), which is
driven by a standard Brownian motion B̄t and a Poisson process N̄t with arrival rate λ̄,

dAt = μ̄At dt + σ̄At dB̄t +
(
exp(ν̄) − 1

)
At− dN̄t , A0 ∈R+. (50)

The capital stock increases if gross investment, It , exceeds stochastic capital depre-
ciation,

dKt = (It − δKt )dt + σKt dZt +
(
exp(ν) − 1

)
Kt− dNt , K0 ∈R+, (51)

where δ > 0 is the depreciation rate of capital,Zt is a standard Brownian motion (uncor-
related with B̄t ), and Nt is a Poisson process with constant arrival rate λ. The jump size
in the capital stock is proportional and has a degenerated distribution.25

Preferences The economy is inhabited by a single consumer, interpreted as representa-
tive of a large number of identical consumers. Preferences are defined recursively by (8).
For simplicity, we assume γ = 1/ψ, so the normalized aggregator (9) reads f (Ct ,Ut ) =
C

1−γ
t ((1 − γ))−1 − ρUt , and we obtain the same value function as in the case of time-

separable utility. In this case, the consumer maximizes

U0 ≡E0

∫ ∞

0
e−ρtu(Ct )dt, u′ > 0, u′′ < 0 (52)

subject to the budget constraint

dWt =
(
(rt − δ)Wt +wt −Ct

)
dt + σWt dZt + JtWt− dNt , W0 ∈ R. (53)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and wt is labor in-
come. The paths of factor rewards are taken as given by the representative consumer.

A.3.2 The Bellman equation and the Euler equation Define the value function as

V (W0,A0 ) = max
{Ct }∞t=0

U0 s.t. (50) and (53), (54)

denoting the present value of expected utility along the optimal program. Hence, a nec-
essary condition for optimality is provided by the Bellman’s principle at time s

ρV (Ws ,As ) = max
Cs

{
u(Cs ) + 1

dt
Es dV (Ws ,As )

}
.

25As in Cox, Ingersoll, and Ross (1985, p. 366), individuals can invest in physical production indirectly
through firms or directly, in effect creating their own firms. There is a market for instantaneous borrowing
and lending at the interest rate rt = YK , which is determined as part of the competitive equilibrium of the
economy. There are markets for contingent claims which are all zero-supply assets in equilibrium.
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Using Itô’s formula yields

dV (Ws ,As ) = (
(rs − δ)Ws +ws −Cs

)
VW dt + VW σWs dZs + VAμ̄As dt + VAσ̄As dB̄s

+ 1
2

(
VAAσ̄

2A2
s + VWW σ2W 2

s

)
dt + [

V
(
eνWs−,As−

) − V (Ws−,As− )
]
dNt

+ [
V

(
Ws−, eν̄As−

) − V (Ws−,As− )
]
dN̄t .

Using the property of stochastic integrals, we may write

ρV (Ws ,As ) = max
Cs

{
u(cs ) + (

(rs − δ)Ws +ws −Cs
)
VW + 1

2

(
VAAσ̄

2A2
s + VWW σ2W 2

s

)
+ VAμ̄As + [

V
(
eνWs ,As

) − V (Ws ,As )
]
λ

+ [
V

(
Ws, eν̄As

) − V (Ws ,As )
]
λ̄

}
for any s ∈ [0, ∞). Hence, we obtain the first-order condition

u′(Ct ) = VW (Wt ,At ), (55)

for any t ∈ [0, ∞), making consumption a function of the state variables Ct = C(Wt ,At ).
For the evolution of the costate we use the maximized Bellman equation

ρV (Wt ,At ) = u
(
C(Wt ,At )

) + (
(rt − δ)Wt +wt −C(Wt ,At )

)
VW + VAμ̄At

+ 1
2

(
VAAσ̄

2A2
t + VWW σ2W 2

t

) + [
V

(
eνWt ,At

) − V (Wt ,At )
]
λ

+ [
V

(
Wt , eν̄At

) − V (Wt ,At )
]
λ̄, (56)

where rt = r(Wt ,At ) and wt = w(Wt ,At ) follow from the firm’s optimization problem,
and the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = μ̄AtVAW + (
(rt − δ)Wt +wt −Ct

)
VWW + (rt − δ)VW

+ 1
2

(
VWAAσ̄

2A2
t + VWWW σ2W 2

t

)
+ VWW σ2Wt +

[
VW

(
eνWt ,At

)
eν − VW (Wt ,At )

]
λ

+ [
VW

(
Wt , eν̄At

) − VW (Wt ,At )
]
λ̄.

Collecting terms we obtain(
ρ− (rt − δ) + λ+ λ̄)VW = VAW μ̄At +

(
(rt − δ)Wt +wt −Ct

)
VWW

+ 1
2

(
VWAAσ̄

2A2
t + VWWW σ2W 2

t

)
+ σ2VWW Wt + VW

(
eνWt ,At

)
eνλ+ VW

(
Wt , eν̄At

)
λ̄.
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Using Itô’s formula, the costate obeys

dVW = VAW μ̄At dt + VAW σ̄At dB̄t
+ 1

2

(
VWAAσ̄

2A2
t + VWWW σ2W 2

t

)
dt + VWW σWt dZt

+ (
(rt − δ)Wt +wt −Ct

)
VWW dt

+ [
VW (Wt ,At ) − VW (Wt−,At− )

]
(dN̄t + dNt ),

where inserting yields

dVW = (
ρ− (rt − δ) + λ+ λ̄)VW dt
− VW

(
eνWt ,At

)
eνλ− VW

(
Wt , eν̄At

)
λ̄

− σ2VWW Wt dt + VAW Atσ̄ dB̄t + VWW Wtσ dZt
+ [
VW

(
eνWt−,At−

) − VW (Wt−,At− )
]
dNt

+ [
VW

(
Wt−, eν̄At−

) − VW (Wt−,At− )
]
dN̄t ,

which describes the evolution of the costate variable. As a final step, we insert the first-
order condition (55) to obtain the Euler equation

du′(Ct ) = (
ρ− (rt − δ) + λ+ λ̄)u′(Ct )dt

− u′(C(
eνWt ,At

))
eνλdt − u′(C(

Wt , eν̄At
))
λ̄

− σ2u′′(Ct )CW Wt dt + u′′(Ct )(CAAtσ̄ dB̄t +CW Wtσ dZt )
+ [
u′(C(

Wt−, eν̄At−
)) − u′(C(Wt−,At− )

)]
dN̄t

+ [
u′(C(

eνWt−,At−
)) − u′(C(Wt−,At− )

)]
dNt , (57)

which implicitly determines the optimal consumption path.
We obtain analytical solutions for optimal consumption and asset returns only for

specific parameter restrictions and particular assets. In what follows, we obtain condi-
tions under which the policy function Ct = C(At ,Wt ), also referred to as the consump-
tion function, is available analytically, and our variables of interest can be solved in
closed form.26

Proposition A.9 (Optimal consumption). Suppose the production function F(Kt , L) is
Yt = AtK

α
t L

1−α, utility has constant relative risk aversion, that is, −u′′(Ct )Ct/u′(Ct ) =
γ, and the subjective discount rate ρ = ρ̄. Then optimal consumption is proportional to
income.

ρ = ρ̄ ⇒ Ct = C(Wt ,At ) = (1 − s)AtW α
t , γ > 1,

26Similar to the endowment economy we get analytical expressions for the SDF, equilibrium consump-
tion and asset returns for parametric restrictions α= γ with a constant consumption-wealth ratio (see Sec-
tion B.2, Online Supplementary Material, Parra-Alvarez, Posch, and Schrimpf (2022)).
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ρ̄ ≡ (
e−γν̄ − 1

)
λ̄+ (

e(1−αγ)ν − 1
)
λ− γμ̄ (58)

+ 1
2

(
γ(1 + γ)σ̄2 − αγ(1 − αγ)σ2) − (1 − αγ)δ,

where 1 − s ≡ (γ− 1)/γ is the marginal propensity to consume.

Proof. The idea of this proof is to show that using an educated guess of the value func-
tion, the maximized Bellman equation (56) and the first-order condition (55) are both
fulfilled. We guess that the value function reads

V (Wt ,At ) = C1W
1−αγ
t

1 − αγ A
−γ
t . (59)

From (55), optimal consumption is a constant fraction of income,C−γ
t =C1W

−αγ
t A

−γ
t or

equivalentlyCt = C
−1/γ
1 W α

t At . Now use the maximized Bellman equation (56), the prop-
erty of the Cobb–Douglas technology, FK = αAtK

α−1
t L1−α and FL = (1 − α)AtKαt L

−α,
together with the transformation Kt ≡LWt , and insert the solution candidate,

ρV (Wt ,At ) = C
− 1−γ

γ

1 W
α−αγ
t A

1−γ
t

1 − γ + (
(rt − δ)Wt +wt −C(Wt ,At )

)
VW + VAμ̄At

+ 1
2

(
VAAσ̄

2A2
t + VWW σ2W 2

t

) + [
V

(
eνWt ,At

) − V (Wt ,At )
]
λ

+ [
V

(
Wt , eν̄At

) − V (Wt ,At )
]
λ̄.

Inserting the guess and collecting terms which is equivalent to

(
ρ− (

e(1−αγ)ν − 1
)
λ− (

e−γν̄ − 1
)
λ̄
)C1W

1−αγ
t

1 − αγ A
−γ
t

= C
− 1−γ

γ

1 W
α−αγ
t A

1−γ
t

1 − γ

− γC1W
1−αγ
t

1 − αγ μ̄A
−γ
t + (

αAtW
α
t − δWt + (1 − α)AtW α

t −C
−1/γ
1 W α

t At
)
C1W

−αγ
t A

−γ
t

+ 1
2

(
γ(1 + γ)σ̄2 − αγ(1 − αγ)σ2)C1W

1−αγ
t

1 − αγ A
−γ
t .

Collecting terms gives

ρ+ γμ̄− 1
2

(
γ(1 + γ)σ̄2 − αγ(1 − αγ)σ2) + (1 − αγ)δ

− (
e(1−αγ)ν − 1

)
λ− (

e−γν̄ − 1
)
λ̄

=
(

γ

1 − γC
−1/γ
1 + 1

)
(1 − αγ)AtW

α−1
t ,
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which has a solution for C−1/γ
1 = (γ− 1)/γ and

ρ= (
e−γν̄ − 1

)
λ̄+ (

e(1−αγ)ν − 1
)
λ− γμ̄+ 1

2

(
γ(1 + γ)σ̄2 − αγ(1 − αγ)σ2) − (1 − αγ)δ.

This proves that the guess (59) indeed is a solution, and by inserting the guess together
with the constant, we obtain the optimal policy function for consumption.

Compared to the simple endowment economy, the production economy introduces
richer dynamics, which imply that consumption growth rates are endogenous and will
depend on the specific solution. The dynamics will follow mainly from the marginal
product of physical capital, which for parametric restrictions are given in the following
result.

Proposition A.10 (Rental rate of capital). Suppose the production function F(Kt , L)
is Yt = AtK

α
t L

1−α. The rental rate of capital is the marginal product of capital, rt =
αAtK

α−1
t , and follows the reducible stochastic differential equation:

drt = c1(c2 − rt )rt dt + (α− 1)σrt dZt + σ̄rt dB̄t +
(
exp

(
(α− 1)ν

) − 1
)
rt− dNt

+ (
exp(ν̄) − 1

)
rt− dN̄t (60)

in which the constants c1 and c2 for the parametric restriction ρ= ρ̄ are given by

c1 ≡ 1 − α
αγ

, c2 ≡ αγδ− 1
2
αγ(α− 2)σ2 − αγ

α− 1
μ̄.

Proof. An application of Itô’s lemma to the rental rate of capital, rt = αAtKα−1
t , yields

drt = (α− 1)AtK
α−2
t (Yt −Ct − δKt )dt + (α− 1)σAtKtK

α−2
t dZt

+ (
AtK

α−1
t −At−Kα−1

t−
)
(dNt + dN̄t ) + 1

2
(α− 1)(α− 2)Kα−3

t σ2K2
t At dt

+Kα−1
t

(
dAt −

(
exp(ν̄) − 1

)
At− dN̄t

)
= (α− 1)(Yt/Kt −Ct/Kt − δ)AtK

α−1
t dt + (α− 1)σAtK

α−1
t dZt

+ (
exp

(
(α− 1)ν

) − 1
)
At−Kα−1

t− dNt + 1
2

(α− 1)(α− 2)AtK
α−1
t σ2 dt

+ μ̄AtKα−1
t dt + σ̄AtKα−1

t dB̄t +
(
exp(ν̄) − 1

)
At−Kα−1

t− dN̄t

= 1 − α
α

(
αCt/Kt + αδ− 1

2
α(α− 2)σ2 − α

α− 1
μ̄− rt

)
rt dt

+ (α− 1)σrt dZt + σ̄rt dB̄t
+ (

exp
(
(α− 1)ν

) − 1
)
rt− dNt +

(
exp(ν̄) − 1

)
rt− dN̄t .

For ρ= ρ̄, we obtain

drt = 1 − α
α

(
αδ− 1

2
α(α− 2)σ2 − α

α− 1
μ̄− srt

)
rt dt + (α− 1)σrt dZt + σ̄rt dB̄t
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+ (
exp

(
(α− 1)ν

) − 1
)
rt− dNt +

(
exp(ν̄) − 1

)
rt− dN̄t

≡ c1(c2 − rt )rt dt + (α− 1)σrt dZt + σ̄rt dB̄t +
(
exp

(
(α− 1)ν

) − 1
)
rt− dNt

+ (
exp(ν̄) − 1

)
rt− dN̄t ,

which is a reducible stochastic differential equation, in which we defined c1 ≡ 1−α
αγ and

c2 ≡ αγδ− 1
2αγ(α− 2)σ2 − αγ

α−1 μ̄.
Because the SDE for rt is reducible, it has the solution

rs =�s,t
(
r−1
t + c1

∫ s

t
�v,t dv

)−1

, (61)

where �s,t ≡ e(c1c2− 1
2 ((α−1)σ )2− 1

2 σ̄
2 )(s−t )+(Zs−Zt )(α−1)σ+(B̄s−B̄t )σ̄+(α−1)ν(Ns−Nt )+ν̄(N̄s−N̄t ).

Note that the analytical expressions simplify the problem of simulating EE errors.

A.3.3 General equilibrium consumption growth rates and asset returns

Consumption Observe that the solution to (50) is for s ≥ t,

As =Ate(μ̄− 1
2 σ̄

2 )(s−t )+σ̄(B̄s−B̄t )+ν̄(N̄s−N̄t )

⇔ ln(As/At ) =
(
μ̄− 1

2
σ̄2

)
(s− t ) + σ̄(B̄s − B̄t ) + ν̄(N̄s − N̄t ). (62)

Similarly, we obtain growth rates of the capital stock from (51),

ln(Ks/Kt ) =
∫ s

t

(
rv/α−Cv/Kv − δ− 1

2
σ2

)
dv+ σ(Zs −Zt ) + ν(Ns −Nt ). (63)

For the case of ρ= ρ̄, as from Proposition A.9, consumption is a constant fraction of
output, Ct = (1 − s)Yt , and thus we obtain the consumption growth rate as ln(Cs/Ct ) =
ln(Ys/Yt ) = ln(As/At ) + α ln(Ks/Kt ), which finally gives

ln(Cs/Ct ) = 1/γ
∫ s

t
rv dv+

(
μ̄− 1

2
σ̄2 − αδ− 1

2
ασ2

)
(s− t ) + σ̄(B̄s − B̄t )

+ ασ(Zs −Zt ) + αν(Ns −Nt ) + ν̄(N̄s − N̄t ), (64)

which is endogenously determined in the production economy.

Proposition A.11 (Stochastic discount factor). Following the assumptions in Proposi-
tion A.9, the stochastic discount factor (SDF) is given by

ms/mt = e−
∫ s
t (rv−δ)dv+[(1−e(1−αγ)ν )λ+(1−e−γν̄ )λ̄+γασ2− 1

2 (γσ̄ )2− 1
2 (αγσ )2](s−t )

× e−γσ̄(B̄s−B̄t )−αγσ(Zs−Zt )−αγν(Ns−Nt )−γν̄(N̄s−N̄t ). (65)

Proof. From the Euler equation (57), we obtain for s ≥ t,

ms/mt = exp
(

−
∫ s

t

(
rl − δ− λ− λ̄+ u′(C(

eνWl,Al
))

u′(C(Wl,Al )
) eνλ+ u′(C(

Wl, e
ν̄Al

))
u′(C(Wl,Al )

) λ̄)dl
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+ u′′(Cl )CW Wl
u′(Cl )

σ2 dl− 1
2

∫ s

t

(
u′′(Cl )

)2(
u′(Cl )

)2

(
(CAAlσ̄ )2 + (CW Wlσ )2)dl

+
∫ s

t

u′′(Cl )
u′(Cl )

(CAAlσ̄ dB̄l +CW Wlσ dZl )

+
∫ s

t
ln

(
u′(C(

eνWl−,Al−
))

u′(C(Wl−,Al− )
) )

dNl +
∫ s

t
ln

(
u′(C(

Wl−, eν̄Al−
))

u′(C(Wl−,Al− )
) )

dN̄l

)
which after inserting the policy function Ct = C(Wt ,At ) gives the desired results.

Proposition A.12 (Risky bond). Consider a risky asset that pays at the rate rt in t + 1.

The one-period holding gross return of an asset with the random payoffXb,t+1 = e
∫ t+1
t rs ds

is

Rbt+1 = exp
(∫ s

t

(
rv − δ− γασ2 − e−αγν(1 − eν)λ)dv). (66)

Proof. Substitute the random payoffXb
t+1 in (2) to obtain the equilibrium price of this

risky bond at time t as

Pbt =Et
[
mt+1

mt
e
∫ t+1
t rs ds

]
.

Using the definition of the SDF (65) and making use of Lemma (A.1) yields

Pbt = eδ+γασ2+e−αγνλ−e(1−αγ)νλ.

For any s > t, Rbs =Xb
s /P

b
t denotes the gross return on the risky bond. The desired result

follows by setting s = t + 1.

Proposition A.13 (Risky asset). The one-period holding return on an asset that pays
one unit of next period’s capital,Xc

t+1 =Kαγt+1, is

Rct+1 = exp
(∫ t+1

t

(
rv − δ− λ+ e(1−αγ)νλ− γασ2 + 1

2
(αγσ )2

)
dv

)
× exp

(
αγσ(Zt+1 −Zt ) + αγν(Nt+1 −Nt )

)
. (67)

Proof. Note that for any s > t it follows from (63) that

K
αγ
s =Kαγt e

∫ s
t (γrv−αγCv/Kv−αγδ− 1

2αγσ
2 )dv+αγσ(Zs−Zt )+αγν(Ns−Nt ).

Set s = t + 1 and substitute the random payoff Xc
t+1 together with the definition of the

SDF (65) into (2). Making use of Lemma A.1, we compute the equilibrium price of this
risky asset at time t as

Pct =Et
[
mt+1

mt
K
αγ
t+1

]
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⇒ Pct =Kαγt e−(αγδ+ 1
2αγσ

2−δ−(1−e(1−αγ)ν )λ−(1−e−γν̄ )λ̄−γασ2+ 1
2 (γσ̄ )2+ 1

2 (αγσ )2 )

×Et
[
e−γσ̄(B̄t+1−B̄t )−γν̄(N̄t+1−N̄t )]

=Kαγt e−(αγδ+ 1
2αγσ

2−δ−(1−e(1−αγ)ν )λ−γασ2+ 1
2 (αγσ )2 ).

For any s > t, Rcs =Xc
s /P

c
t denotes the gross return on the risky asset. The desired result

follows by setting s = t + 1.

Note that the risky asset considered does not represent a market portfolio, but is
simply used to illustrate the possibility of generating Euler equation (EE) errors for par-
ticular assets.

A.3.4 Proof of Proposition 4.2 Substituting the SDF (65) together with the one-period
holding return (66) into (3) yields the unconditional pricing error for the risky bond

ebR = Et
(
ebR,t+1

)
= Et

[
e(1−e−αγν )λ+(1−e−γν̄ )λ̄− 1

2 (γσ̄ )2− 1
2 (αγσ )2

× e−γσ̄(B̄t+1−B̄t )−αγσ(Zt+1−Zt )−αγν(Nt+1−Nt )−γν̄(N̄t+1−N̄t )] − 1.

Conditional on no disasters, we can rationalize Euler equation errors for the risky bond

ebR|Nt+1−Nt=0 ≡ Et
(
ebR,t+1|Nt+1 −Nt = 0

)
= exp

((
1 − e−αγν)λ) − 1.

Similarly, inserting the SDF together with one-period holding return of the risky as-
set (67) we obtain the EE error

ecR =Et
[
e−

1
2 (γσ̄ )2−(e−γν̄−1)λ̄−γσ̄(B̄t+1−B̄t )−γν̄(N̄t+1−N̄t )] − 1.

A.4 The long-run risk model

A.4.1 The model Consider an endowment economy where production, Yt , is exoge-
nous as in Lucas (1978). No resources are utilized, and there is no possibility of affecting
the perishable output.

Technology Following Bansal and Yaron (2004), the law of motion of Yt is given by

dYt = μtYt dt +
√
ϑtYt dBt , (68)

where μt is the long-run risk in the endowment, assumed to follow the square-root pro-
cess

dμt = κμ(μ̄−μt )dt + νμ
√
ϑt dBμ,t , μ0 ∈R, (69)

with persistence κμ, and volatility νμ
√
ϑt . The parameter νμ is the volatility leverage ra-

tio for long-run risks. Moreover, the variance ϑt is assumed to follow the square-root
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process

dϑt = κϑ(ϑ̄−ϑt )dt + νϑ
√
ϑt dBϑ,t , ϑ0 ∈R, (70)

with persistence κϑ (see Heston (1993)). The processes Bt , Bμ,t , and Bϑ denote stan-
dard and independent Brownian motions. In what follows, we define dBt ≡ [dBt , dBμ,t ,
dBϑ,t ]	.

Ownership of any produced output is determined at each instant of time in a com-
petitive stock market where equity shares entitle their owners to all of the future divi-
dends. Shares are traded at a price Pdt , and their total return evolves according to

dRdt = μR,t dt +σR,t dBt , (71)

withRdt = (dPdt +Ct )/Pdt the return cum-dividend. The capital market also trades a risk-

free asset (in zero net supply) with return rft . The price of the riskless asset evolves ac-
cording to

dP
f
t = Pft rft dt, P0 = 1. (72)

Preferences Consider an economy with a single consumer, interpreted as representa-
tive of a large number of identical consumers. The consumer maximizes expected life-
time utility given by (8) and (9) subject to

dWt =
[(
μR,t − rft

)
θtWt + rft Wt −Ct

]
dt + θtσR,tWt dBt , W0 ∈R, (73)

where r
f
t is the risk-free rate, μR,t the expected return on the risky asset, σR,t ≡

[σ (Y )
R,t , σ (μ)

R,t , σ (ϑ)
R,t ] its volatility, and θt denotes the fraction of financial wealth, Wt , in-

vested by the consumer in the risky asset.

A.4.2 The Bellman equation Define the value function as

V (W0, μ0,ϑ0 ) ≡ max
{Ct ,θt }∞t=0

U0, s.t. (73), (69), and (70), (74)

denoting the present value of expected utility along the optimal program. Hence, a nec-
essary condition for optimality is provided by the Bellman’s principle at time s,

0 = max
Cs ,θs

{
f
(
Cs , V (Ws , μs ,ϑs )

) + 1
dt
Es dV (Ws , μs ,ϑs )

}
. (75)

Using Itô’s formula yields

dV (Wt , μt ,ϑt ) =
(((

μR,t − rft
)
θtWt + rft Wt −Ct

)
VW + κμ(μ̄−μt )Vμ + κϑ(ϑ̄−ϑt )Vϑ

+ 1
2
θ2
t σR,tσ

	
R,tW

2
t VW W + 1

2
ν2
μϑtVμμ + 1

2
ν2
ϑϑtVϑϑ

+ θtσ (μ)
R,t Wtνμ

√
ϑtVW μ + θtσ (ϑ)

R,t Wtνϑ
√
ϑtVW ϑ

)
dt

+ θtσR,tWtVW dBt + νμ
√
ϑtVμ dBμ,t + νϑ

√
ϑtVϑ dBϑ,t .
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Using the properties of stochastic integrals it follows that

1
dt
Et dV (Wt , μt ,ϑt )

= ((
μR,t − rft

)
θtWt + rft Wt −Ct

)
VW + κμ(μ̄−μt )Vμ

+ κϑ(ϑ̄−ϑt )Vϑ + 1
2
θ2
t σR,tσ

	
R,tW

2
t VW W

+ 1
2
ν2
μϑtVμμ + 1

2
ν2
ϑϑtVϑϑ

+ θtσ (μ)
R,t Wtνμ

√
ϑtVW μ + θtσ (ϑ)

R,t Wtνϑ
√
ϑtVW ϑ,

which substituted into (75) yields for any t ≥ 0,

0 = max
Ct ,θt

{
f
(
Ct , V (Wt , μt ,ϑt )

) + ((
μR,t − rft

)
θtWt + rft Wt −Ct

)
VW + κμ(μ̄−μt )Vμ

+ κϑ(ϑ̄−ϑt )Vϑ + 1
2
θ2
t σR,tσ

	
R,tW

2
t VW W + 1

2
ν2
μϑtVμμ + 1

2
ν2
ϑϑtVϑϑ

+ θtσ (μ)
R,t Wtνμ

√
ϑtVW μ + θtσ (ϑ)

R,t Wtνϑ
√
ϑtVW ϑ

}
. (76)

Hence, the first-order conditions for any interior solution are

fC(Ct , V ) = VW , (77)

θt = −μR,t − rft
σR,tσ

	
R,t

VW
WtVWW

− σ
(μ)
R,t νμ

√
ϑt

σR,tσ
	
R,t

VW μ

WtVWW
− σ (ϑ)

R,t νϑ
√
ϑt

σR,tσ
	
R,t

VW ϑ
WtVWW

. (78)

Equilibrium properties The economy is closed and all output will be consumed, Ct =
Yt . Market clearing implies that the consumption growth rates are exogenous. The risk-
free asset is in zero net supply and all financial wealth is invested in the risky asset, θt = 1.

A.4.3 General equilibrium consumption growth rates and asset returns

Consumption From the dividend process (68), consumption growth rates are given by

ln(Cs/Ct ) = ln(Ys/Yt ) =
∫ s

t

(
μv − 1

2
ϑv

)
dv+

∫ s

t
ϑv dBv, (79)

whereμt andϑt are the solutions to the stochastic differential equations in (69) and (70).

Proposition A.14 (Equilibrium value function). If the preferences of the consumer are
defined recursively by (8) and (9), then for ψ 
= 1 the equilibrium value function is

V (Wt , μt ,ϑt ) = W
1−γ
t

1 − γ H(μt ,ϑt ), (80)
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where the functionH(μt ,ϑt ) satisfies the partial differential equation

0 = 1 − γ
1 − 1/ψ

(
H(μt ,ϑt )

1−ψ
1−γ − ρ) + (1 − γ)μt − 1

2
γ(1 − γ)ϑt

− 1
2
ψ(1 −ψ)ν2

μϑt

(
Hμ(μt ,ϑt )
H(μt ,ϑt )

)2

+ψκμ(μ̄−μt )Hμ(μt ,ϑt )
H(μt ,ϑt )

+ 1
2
ψν2

μϑt
Hμμ(μt ,ϑt )
H(μt ,ϑt )

− 1
2
ψ(1 −ψ)ν2

ϑϑt

(
Hϑ(μt ,ϑt )
H(μt ,ϑt )

)2

+ψκϑ(ϑ̄−ϑt )Hϑ(μt ,ϑt )
H(μt ,ϑt )

+ 1
2
ψν2

ϑϑt
Hϑϑ(μt ,ϑt )
H(μt ,ϑt )

. (81)

Proof. Conjecture that the value function takes the form in (80). Then the normalized
aggregator in (9) can be written as

f (Ct , V ) = 1
1 − 1/ψ

W
1−γ
t H(μt ,ϑt )

(
(Wt/Ct )−(1−1/ψ)H(μt ,ϑt )

1−ψ
(1−γ)ψ − ρ).

Dividing throughout by V and substituting (90) yields

f (Ct , V )
V

= 1 − γ
1 − 1/ψ

(
H(μt ,ϑt )

1−ψ
1−γ − ρ). (82)

Using the equilibrium properties Ct = Yt and θt = 1, equation (76) reduces to

0 = f (Ct , V ) + (μR,tWt −Ct )VW + κμ(μ̄−μt )Vμ + κϑ(ϑ̄−ϑt )Vϑ
+ 1

2
σR,tσ

	
R,tW

2
t VW W + 1

2
ν2
μϑtVμμ + 1

2
ν2
ϑϑtVϑϑ

+ σ (μ)
R,t Wtνμ

√
ϑtVW μ + σ (ϑ)

R,t Wtνϑ
√
ϑtVW ϑ. (83)

Substituting (80), dividing throughout by V , and using (82) we obtain

0 = 1 − γ
1 − 1/ψ

(
H(μt ,ϑt )

1−ψ
1−γ − ρ) + (1 − γ)(μR,t −Ct/Wt )

− 1
2
γ(1 − γ)σR,tσ

	
R,t

+ (1 − γ)σ (μ)
R,t νμ

√
ϑt
Hμ(μt ,ϑt )
H(μt ,ϑt )

+ κμ(μ̄−μt )Hμ(μt ,ϑt )
H(μt ,ϑt )

+ 1
2
ν2
μϑt

Hμμ(μt ,ϑt )
H(μt ,ϑt )

+ (1 − γ)σ (ϑ)
R,t νϑ

√
ϑt
Hϑ(μt ,ϑt )
H(μt ,ϑt )

+ κϑ(ϑ̄−ϑt )Hϑ(μt ,ϑt )
H(μt ,ϑt )

+ 1
2
ν2
ϑϑt

Hϑϑ(μt ,ϑt )
H(μt ,ϑt )

. (84)
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Market clearing implies that Pdt = Wt (see Proposition A.16). Hence, the price of a
claim to consumption is given by

Pdt = CtH(μt ,ϑt )
− 1−ψ

1−γ . (85)

with dynamics

dPdt

Pdt
= μP ,t dt +σP ,t dBt , (86)

where

μP ,t = μt − 1 −ψ
1 − γ

Hμ(μt ,ϑt )
H(μt ,ϑt )

κμ(μ̄−μt ) − 1 −ψ
1 − γ

Hϑ(μt ,ϑt )
H(μt ,ϑt )

κϑ(ϑ̄−ϑt )

− 1
2

1 −ψ
1 − γ

[(
−1 −ψ

1 − γ − 1
)(

Hμ(μt ,ϑt )
H(μt ,ϑt )

)2

+ Hμμ(μt ,ϑt )
H(μt ,ϑt )

]
ν2
μϑt

− 1
2

1 −ψ
1 − γ

[(
−1 −ψ

1 − γ − 1
)(

Hϑ(μt ,ϑt )
H(μt ,ϑt )

)2

+ Hϑϑ(μt ,ϑt )
H(μt ,ϑt )

]
ν2
ϑϑt , (87)

and

σP ,t =
[√
ϑt , −1 −ψ

1 − γ
Hμ(μt ,ϑt )
H(μt ,ϑt )

νμ
√
ϑt , −1 −ψ

1 − γ
Hϑ(μt ,ϑt )
H(μt ,ϑt )

νϑ
√
ϑt

]
. (88)

By combining the consumption to price ratio from (85) and the price process in (86),
the equilibrium dynamic of the return for the risky asset in (71) becomes

dRdt ≡ dPdt

Pdt
+ Ct

Pdt
dt = (μP ,t +Ct/Wt )︸ ︷︷ ︸

=μR,t

dt + σP ,t︸︷︷︸
=σR,t

dBt . (89)

Substituting μR,t and σR,t into (84) yields (81) and verifies the form (80).

Proposition A.15 (Optimal wealth-consumption ratio). Given the value function (80),
the optimal wealth-consumption ratio is given by

Wt

Ct
=H(μt ,ϑt )

− 1−ψ
1−γ . (90)

Proof. Take the partial derivatives of the normalized aggregator in (9) and of the value
function in (80). Substitute into the first-order condition (77) to obtain (90).

Proposition A.16 (Risky asset). Consider a claim on dividends, which continuously
paysXd,t = Ct . In general equilibrium, the price of this claim is

Pdt = CtH(μt ,ϑt )
− 1−ψ

1−γ . (91)
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Proof. In equilibrium, the consumer’s wealth is defined by the present value of all fu-
ture consumption which, in the absence of arbitrage, defines the price of an asset that
pays consumption as its dividend, Pdt . Hence, (90) implies that

Pdt = CtH(μt ,ϑt )
− 1−ψ

1−γ . (92)

On the other hand, to obtain (92) note that market clearing implies that financial wealth
in (73) evolves over time according to

dWt = (μR,tWt −Ct )dt +σR,tWt dBt

⇔ dWt +Ct dt
Wt

= μR,t dt +σR,t dBt . (93)

By comparing (71) and (93), it follows that Pdt =Wt , and using (90) the result obtains.

Proposition A.17 (Risk-free rate). The instantaneous return on the risk-free asset is

r
f
t = μR,t − γσR,tσ

	
R,t +

Hμ(μt ,ϑt )
H(μt ,ϑt )

σ
(μ)
R,t νμ

√
ϑt + Hϑ(μt ,ϑt )

H(μt ,ϑt )
σ (ϑ)
R,t νϑ

√
ϑt . (94)

Proof. Using the condition for the portfolio share (78) together with the market clear-
ing condition θt = 1, and the derivatives of the value function (80) the desired result
follows.

The functionH(μt ,ϑt ) in (80) only admits a closed-form solution for the case of uni-
tary elasticity of intertemporal substitution,ψ= 1, or the limiting case of CRRA,ψ= 1/γ.
For any other values of ψ, we use a log-linear approximation of the unknown function
around the unconditional mean of the state variables (a similar approach is taken by
Campbell et al. (2004), Chacko and Viceira (2005)).

Proposition A.18 (Log-linear approximation). For ψ 
= 1, the equilibrium value func-
tion in (80) can be approximated by

V (Wt , μt ,ϑt ) = W
1−γ
t

1 − γ exp(aH + bHμt + cHϑt ), (95)

where the approximation constants solve the system of equations

aH = 1
ψh1

(
1 − γ

1 − 1/ψ
h0 − ρ 1 − γ

1 − 1/ψ
+ψκμμ̄bH +ψκϑϑ̄cH

)
,

bH = 1 − γ
ψ

1
κμ + h1

,

cH = ψ(h1 + κϑ )

ν2
ϑψ

2 ±
√√√√(

ψ(h1 + κϑ )

ν2
ϑψ

2

)2

− ν2
μψ

2b2
H − γ(1 − γ)

ν2
ϑψ

2 .
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The linearization constants h0 and h1 are given by

h1 = exp
(

1 −ψ
1 − γ (aH + bHμ̄+ cHϑ̄)

)
, and h0 = h1(1 − lnh1 ),

where μ̄=E(μt ) and ϑ̄=E(ϑt ).

Proof. Defining ct ≡ lnCt and wt ≡ lnWt , the consumption-wealth ratio Ct/Wt =
exp(ct − wt ) is approximated by a log-linear approximation around the mean
consumption-wealth ratio

exp(ct −wt ) ≈ h1 + h1(ct −wt − lnh1 ) = h0 + h1(ct −wt ),

where h1 = exp(c−w), c−w is the log consumption-wealth ratio and h0 = h1(1 − lnh1 ).
Taking logs in (90), we obtain

ct −wt = 1 −ψ
1 − γ lnH(μt ,ϑt ),

and substituting it out into the approximation yields

Ct/Wt ≈ h0 + h1
1 −ψ
1 − γ lnH(μt ,ϑt ) = h0 + h1

1 −ψ
1 − γ lnH(μt ,ϑt ).

Solving H(μt ,ϑt ). Consider now the approximation of the function H(μt ,ϑt ) that
solves the maximized Bellman equation in (81), that is,

0 = 1 − γ
1 − 1/ψ

=Ct/Wt︷ ︸︸ ︷
H(μt ,ϑt )

1−ψ
1−γ − ρ 1 − γ

1 − 1/ψ
+ (1 − γ)μt − 1

2
γ(1 − γ)ϑt

+ψκμ(μ̄−μt )Hμ(μt ,ϑt )
H(μt ,ϑt )

+ψκϑ(ϑ̄−ϑt )Hϑ(μt ,ϑt )
H(μt ,ϑt )

− 1
2
ψ(1 −ψ)ν2

μϑt

(
Hμ(μt ,ϑt )
H(μt ,ϑt )

)2

− 1
2
ψ(1 −ψ)ν2

ϑϑt

(
Hϑ(μt ,ϑt )
H(μt ,ϑt )

)2

+ 1
2
ψν2

μϑt
Hμμ(μt ,ϑt )
H(μt ,ϑt )

+ 1
2
ψν2

ϑϑt
Hϑϑ(μt ,ϑt )
H(μt ,ϑt )

.

Substitute the log-linear approximation to the consumption-wealth ratio to arrive at

0 = 1 − γ
1 − 1/ψ

h0 −ψh1 lnH(μt ,ϑt ) − ρ 1 − γ
1 − 1/ψ

+ (1 − γ)μt

− 1
2
γ(1 − γ)ϑt +ψκμ(μ̄−μt )Hμ(μt ,ϑt )

H(μt ,ϑt )

+ψκϑ(ϑ̄−ϑt )Hϑ(μt ,ϑt )
H(μt ,ϑt )
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− 1
2
ψ(1 −ψ)ν2

μϑt

(
Hμ(μt ,ϑt )
H(μt ,ϑt )

)2

− 1
2
ψ(1 −ψ)ν2

ϑϑt

(
Hϑ(μt ,ϑt )
H(μt ,ϑt )

)2

+ 1
2
ψν2

μϑt
Hμμ(μt ,ϑt )
H(μt ,ϑt )

+ 1
2
ψν2

ϑϑt
Hϑϑ(μt ,ϑt )
H(μt ,ϑt )

. (96)

We now conjecture that the functionH(μt ,ϑt ) that solves (96) takes the form

H(μt ,ϑt ) = exp(aH + bHμt + cHϑt ), (97)

implying that after we collected terms

0 = 1 − γ
1 − 1/ψ

h0 −ψh1aH − ρ 1 − γ
1 − 1/ψ

+ψκμμ̄bH +ψκϑϑ̄cH

+ (
(1 − γ) −ψ(κμ + h1 )bH

)
μt

+
(

1
2
ν2
ϑψ

2c2
H −ψ(h1 + κϑ )cH + 1

2
ν2
μψ

2b2
H − 1

2
γ(1 − γ)

)
ϑt .

Using the method of undetermined coefficients, the solution for bH (making the co-
efficient on μt zero) is given by

bH = 1 − γ
ψ

1
κμ + h1

. (98)

Given bH , the solution for cH (making the coefficient on ϑt zero) is given by

cH = ψ(h1 + κϑ )

ν2
ϑψ

2 ±
√√√√(

ψ(h1 + κϑ )

ν2
ϑψ

2

)2

− ν2
μψ

2b2
H − γ(1 − γ)

ν2
ϑψ

2 , (99)

and that for aH (making the constant term zero) is

aH = 1
ψh1

(
1 − γ

1 − 1/ψ
h0 − ρ 1 − γ

1 − 1/ψ
+ψκμμ̄bH +ψκϑϑ̄cH

)
. (100)

The values of aH , bH and cH that solve the PDE in (96) depend on the optimal ex-
pected log consumption-wealth ratio lnh1, which is endogenous to the model. Given
the conjecture forH(μt ,ϑt ), we have that for ψ 
= 1,

h1 = exp
(
E(ct −wt )

)
= exp

(
E

(
1 −ψ
1 − γ (aH + bHμt + cHϑt )

))
= exp

(
1 −ψ
1 − γ (aH + bHμ̄+ cHϑ̄)

)
,

where μ̄=E(μt ) and ϑ̄=E(ϑt ).

A.5 Tables and figures

See Tables A.1–A.11.
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Table A.3. Simulation study (rare events model—endowment economy).

(1) (2)

ρ rate of time preference 0.03 0.03
γ coef. of relative risk aversion 4 4
μ̄ consumption growth 0.01 0.01
σ̄ consumption noise 0.005 0.005
−ν̄ size of consumption disaster 0.4 0
λ consumption disaster probability 0.017 0
−κ size of government default 0.3 0
q default probability 0.5 0

Table A.4. Simulation study (rare events model—production economy).

(1) (2)

ρ rate of time preference 0.024 0.016
γ coef. of relative risk aversion 4 4
α output elasticity of capital 0.6 0.6
δ capital depreciation 0.025 0.025
μ̄ productivity growth 0.01 0.01
σ̄ productivity noise 0.01 0.01
−ν̄ size of productivity slump 0.01 0
λ̄ productivity jump probability 0.2 0
σ capital stochastic depreciation 0.005 0.005
−ν size of capital disaster 0.55 0.55
λ capital disaster probability 0.017 0.017

Table A.5. Simulation study (long-run risk model).

(1) (2)

ρ rate of time preference 0.024 0.03
γ coef. of relative risk aversion 10 10
ψ EIS 1.5 1.5
μ̄ consumption growth 0.018 0.018
κμ LRR persistence 0.256 0.3
νμ LRR volatility multiple 0.528 0.456
ϑ̄ baseline volatility (×100) 0.0729 0.0625
κϑ persistence volatility 0.156 0.015
νϑ vol-of-vol 0.0035 0.0027
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Table A.6. C-CAPM simulation results (rare events—endowment economy). The table reports
the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM
(conditional on no disasters) observed at quarterly frequency in the endowment economy with
rare events (cf. Section 3.1) for a parameterization as in column (1) in Table A.3; the bond return,
the equity return, the equity premium and consumption growth (all annualized); and the GMM
estimates of φ= (β, γ)	 with β= 0.97 and γ = 4 based on moments (15), and the estimated EE
errors and RMSE (both annualized). Simulated data is generated using 5000 Monte Carlo sample
paths, each of length 50 years.

Analytical solution Conditional (no disasters)

Results parameterization (1) Mean Std. dev. Mode Median

ebR EE error risky bond −5.59 0.28 −5.48 −5.59
ecX EE error excess return 1.66 0.07 1.66 1.66
RMSE root mean square error 4.12 0.20 4.04 4.12

Observed random variables
Rbt+1 bill return 1.35 0.00 1.50 1.35
Rct+1 equity return 3.05 0.07 3.05 3.05
Rct+1 −Rbt+1 equity premium 1.70 0.07 1.70 1.70
ln(Ct+1/Ct ) consumption growth 1.00 0.07 1.00 1.00

Parameter estimates
β̂ factor of time preference 1.17 0.17 1.21 1.19
γ̂ coef. of relative risk aversion 804.64 244.70 752.50 754.20

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table A.7. C-CAPM simulation results (rare events—endowment economy). The table reports
the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM
(conditional on no disasters) observed at quarterly frequency in the endowment economy with
rare events (cf. Section 3.1) for a parameterization as in column (2) in Table A.3; the bond return,
the equity return, the equity premium and consumption growth (all annualized); and the GMM
estimates of φ= (β, γ)	 with β= 0.97 and γ = 4 based on moments (15), and the estimated EE
errors and RMSE (both annualized). Simulated data is generated using 5000 Monte Carlo sample
paths, each of length 50 years.

Analytical solution Conditional (no disasters)

Results parameterization (2) Mean Std. dev. Mode Median

ebR EE error risky bond 0.00 0.29 0.06 0.00
ecX EE error excess return 0.00 0.07 −0.02 0.00
RMSE root mean square error 0.17 0.13 0.09 0.14

Observed random variables
Rbt+1 bill return 7.04 0.00 7.50 7.04
Rct+1 equity return 7.05 0.07 7.06 7.05
Rct+1 −Rbt+1 equity premium 0.01 0.07 0.01 0.01
ln(Ct+1/Ct ) consumption growth 1.00 0.07 0.98 1.00

Parameter estimates
β̂ factor of time preference 1.00 0.07 0.98 0.99
γ̂ coef. of relative risk aversion 3.73 29.37 9.25 3.64

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table A.8. C-CAPM simulation results (rare events—production economy). The table reports
the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM
(conditional on no disasters) observed at quarterly frequency in the production economy with
rare events (cf. Section 3.2) for a parameterization as in column (1) in Table A.4; the bond return,
the equity return, the equity premium, and consumption growth (all annualized); and the GMM
estimates of φ= (β, γ)	 with β= 0.98 and γ = 4 based on moments (15), and the estimated EE
errors and RMSE (both annualized). Simulated data is generated using 5000 Monte Carlo sample
paths, each of length 50 years.

Constant-saving-function, Conditional (no disasters)

Results parameterization (1) Mean Std. dev. Mode Median

ebR EE error risky bond −4.62 0.65 −4.68 −4.61
ecX EE error excess return 4.64 0.17 4.68 4.64
RMSE root mean square error 4.64 0.35 4.62 4.63

Observed random variables
Rbt+1 bill return (gross) 6.42 0.39 6.43 6.42
Rct+1 equity return (gross) 11.21 0.40 11.35 11.20
Rct+1 −Rbt+1 equity premium 4.79 0.17 4.77 4.78
ln(Ct+1/Ct ) consumption growth 2.19 0.24 2.09 2.19

Parameter estimates
β̂ factor of time preference 0.80 0.64 0.00 0.86
γ̂ coef. of relative risk aversion 474.36 442.44 175.00 327.02

êbR EE error risky bond −0.03 0.02 0.00 −0.04
êcX EE excess return 3.42 1.31 0.00 3.90

R̂MSE root mean square error 2.42 0.93 0.00 2.76
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Table A.9. C-CAPM simulation results (rare events—production economy). The table reports
the simulated Euler equation (EE) errors and RMSE (both annualized) for the standard C-CAPM
(conditional on no disasters) observed at quarterly frequency in the production economy with
rare events (cf. Section 3.2) for a parameterization as in column (2) in Table A.4; the bond return,
the equity return, the equity premium, and consumption growth (all annualized); and the GMM
estimates of φ= (β, γ)	 with β= 0.98 and γ = 4 based on moments (15), and the estimated EE
errors and RMSE (both annualized). Simulated data is generated using 5000 Monte Carlo sample
paths, each of length 50 years.

Constant-saving-function, Conditional (no disasters)

Results parameterization (2) Mean Std. dev. Mode Median

ebR EE error risky bond −4.49 0.58 −4.39 −4.49
ecX EE error excess return 4.63 0.17 4.69 4.63
RMSE root mean square error 4.57 0.32 4.47 4.56

Observed random variables
Rbt+1 bill return (gross) 6.86 0.35 6.81 6.86
Rct+1 equity return (gross) 11.63 0.37 11.88 11.63
Rct+1 −Rbt+1 equity premium 4.78 0.18 4.83 4.78
ln(Ct+1/Ct ) consumption growth 2.50 0.22 2.55 2.50

Parameter estimates
β̂ factor of time preference 0.88 0.87 0.00 0.57
γ̂ coef. of relative risk aversion 806.11 661.98 325.00 590.05

êbR EE error risky bond −0.03 0.02 0.00 −0.03
êcX EE excess return 2.82 1.45 0.00 3.31

R̂MSE root mean square error 1.99 1.03 0.00 2.34
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Table A.10. C-CAPM simulation results (long-run risk model). The table reports the simulated
Euler equation (EE) errors and RMSE∗ (both annualized) for the standard C-CAPM observed at
quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4) for a pa-
rameterization as in column (1) in Table A.5; the bond return, the equity return, the equity pre-
mium and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)	 with
β = 0.98 and γ = 10 based on moments (15), and the estimated EE errors and RMSE (both an-
nualized). Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50
years.

Approximate solution Unconditional

Results parameterization (1) Mean Std. dev. Mode Median

Rbt+1 −E(Rbt+1 ) pricing error bond 0.00 0.51 0.12 0.00
Rdt+1 −E(Rdt+1 ) pricing error risky asset 0.00 0.84 −0.09 −0.01
RMSE∗ root mean square error 0.61 0.43 0.25 0.51

Observed random variables
Rbt+1 bill return 2.58 0.51 2.67 2.58
Rdt+1 equity return 4.17 0.84 4.40 4.16
Rdt+1 −Rbt+1 equity premium 1.59 0.48 1.50 1.59
ln(Ct+1/Ct ) consumption growth 1.76 0.85 1.65 1.76

Parameter estimates
β̂ factor of time preference 1.05 0.05 1.03 1.04
γ̂ coef. of relative risk aversion 21.81 6.95 19.35 21.46

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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Table A.11. C-CAPM simulation results (long-run risk model). The table reports the simulated
Euler equation (EE) errors and RMSE∗ (both annualized) for the standard C-CAPM observed at
quarterly frequency in the endowment economy with long-run risk (cf. Appendix A.4) for a pa-
rameterization as in column (2) in Table A.5; the bond return, the equity return, the equity pre-
mium and consumption growth (all annualized); and the GMM estimates of φ = (β, γ)	 with
β = 0.97 and γ = 10 based on moments (15), and the estimated EE errors and RMSE (both an-
nualized). Simulated data is generated using 5000 Monte Carlo sample paths, each of length 50
years.

Approximate solution Unconditional

Results parameterization (2) Mean Std. dev. Mode Median

Rbt+1 −E(Rbt+1 ) pricing error bond 0.00 0.46 −0.02 0.05
Rdt+1 −E(Rdt+1 ) pricing error risky asset 0.00 0.64 0.12 −0.01
RMSE∗ root mean square error 0.49 0.32 0.24 0.42

Observed random variables
Rbt+1 bill return 3.33 0.46 3.53 3.37
Rdt+1 equity return 4.71 0.64 4.74 4.70
Rdt+1 −Rbt+1 equity premium 1.38 0.52 1.10 1.33
ln(Ct+1/Ct ) consumption growth 1.77 0.63 2.05 1.77

Parameter estimates
β̂ factor of time preference 1.06 0.05 1.04 1.05
γ̂ coef. of relative risk aversion 22.89 7.96 21.65 22.24

êbR EE error risky bond 0.00 0.00 0.00 0.00
êcX EE excess return 0.00 0.00 0.00 0.00

R̂MSE root mean square error 0.00 0.00 0.00 0.00
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